Draft Number: DZ 19880-8:2024

DO NOT USE THIS DRAFT AS A STANDARD – IT MAY BE ALTERED BEFORE FINAL PUBLICATION

Standards New Zealand

PO Box 1473, Wellington 6140

Committee representation

This standard was prepared by the P3652 Hydrogen Standards Committee. Membership of the committee was approved by the New Zealand Standards Approval Board and appointed by the New Zealand Standards Executive under the Standards and Accreditation Act 2015.

The committee consisted of representatives of the following nominating organisations:

Coregas Energy Resources Aotearoa Fabrum Fonterra Co-operative Group Gas Appliance Industry GasNZ GNS Hiringa Energy HW Richardson Group HyPotential Methanex New Zealand Hydrogen Council PEC WorkSafe New Zealand – Energy Safety Z Energy

Acknowledgement

Standards New Zealand gratefully acknowledges the contribution of time and expertise from all those involved in developing this standard.

Copyright

This document is Crown copyright administered by the New Zealand Standards Executive. You may not reproduce any part of it without prior written permission of the New Zealand Standards Executive, unless your actions are permitted by the Copyright Act 1994.

We will vigorously defend the copyright in this standard. Your unauthorised use may result in a penalty being imposed under the Copyright Act 1994 including fines of up to \$10,000 for every infringing copy (up to a maximum of \$150,000 for the same transaction and for other specified offences) or imprisonment of up to 5 years. If the breach is serious, we may also seek additional damages from you as well as injunctive relief and/or an account of profits.

Published by Standards New Zealand, PO Box 1473, Wellington 6140. Telephone: (03) 943 4259, Website: www.standards.govt.nz.

DZ 19880-8:2024 (ISO 19880-8:2019, ISO 19880-8:2019/AMD1:2021, IDT)

New Zealand Standard

Gaseous hydrogen – Fuelling stations

Part 8: Fuel quality control

Preface

The government has a legislated 2050 target of net zero greenhouse gas (GHG) emissions, other than from biogenic methane, and a target under the Paris Agreement to reduce net GHG emissions to 50 per cent below gross 2005 levels by 2030.

Hydrogen is set to play a key role in meeting these targets. (New Zealand has considerable renewable energy resources which could be harnessed to sustainably produce hydrogen for use as a next-generation green fuel source and industrial feedstock.)

To enable the safe integration and novel use of hydrogen in all its forms across New Zealand's energy landscape, a suite of hydrogen-related equipment standards is being adopted.

This standard specifies the protocol for ensuring the quality of the gaseous hydrogen at hydrogen distribution facilities and hydrogen fuelling stations for proton-exchange membrane (PEM) fuel cells for road vehicles.

In 2021, an amendment (ISO 19880-8:2019/Amd 1:2021) to the ISO standard was published. The amendment's main purpose is to align the standard with Grade D of ISO 14687, *Hydrogen fuel quality* – *Product specification*. As such, it is part of the suite of New Zealand adoptions and is recommended to be read in conjunction with this version. The New Zealand edition includes the amendment.

The standard was prepared by the P3652 Hydrogen Standards Committee and is identical to and has been reproduced from ISO 19880-8:2019 *Gaseous hydrogen – Fuelling stations – Part 8: Fuel quality control* and ISO 19880-8:2019/Amd 1:2021 *Gaseous hydrogen – Fuelling stations – Part 8: Fuel quality control*.

As this standard is reproduced from an international standard, the following applies:

- (a) In the source text, 'this International Standard' should read 'this New Zealand standard';
- (b) A full point substitutes for a comma when referring to a decimal marker.

The terms 'normative' and 'informative' have been used in this standard to define the application of the appendix or annex to which they apply. A 'normative' appendix or annex is an integral part of a standard whereas an 'informative' appendix or annex is for information and guidance.

INTERNATIONAL STANDARD

First edition 2019-10

Gaseous hydrogen — Fuelling stations —

Part 8: Fuel quality control

Hydrogène gazeux — Stations de remplissage — Partie 8: Contrôle qualité du carburant

Reference number ISO 19880-8:2019(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2019

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Foreword	iv
Introduction	v
1 Scope	
2 Normative references	
3 Terms and definitions	
4 Abbreviated terms	
5 Hydrogen specifications	4
6 Quality control approaches 6.1 General 6.2 Sampling 6.3 Monitoring	
7 Potential sources of impurities	4
 8 Hydrogen quality assurance methodology 8.1 General 8.2 Prescriptive methodology 8.3 Risk assessment methodology 8.4 Impact of impurities on fuel cell powertrain 	
9 Routine quality control	8
10 Non-routine quality control	8
11 Remedial measures and reporting	9
Annex A (Informative) Impact of impurities on fuel cell powertrains	
Annex B (informative) Example of risk assessment	
Annex C (informative) Example of Japanese hydrogen quality guidelines	
Annex D (informative) Typical hydrogen fuelling station supply chain	
Annex E (informative) Routine hydrogen quality analysis	
Bibliography	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see <u>www.iso.org/</u> iso/foreword.html.

This document was prepared by Technical Committee TC 197, Hydrogen technologies.

A list of all parts in the ISO 19880 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

This document was developed to specify how the quality of gaseous hydrogen fuel for road vehicles which use PEM fuel cells can be assured. The document discusses hydrogen quality control approaches for routine and non-routine conditions, as well as quality assurance plans. It is based upon best practices and experience from the gaseous fuels and automotive industry. ISO 21087 describes the requirements for analytical methods to measure the level of contaminants found in the gaseous hydrogen fuel.

Gaseous hydrogen — Fuelling stations —

Part 8: Fuel quality control

1 Scope

This document specifies the protocol for ensuring the quality of the gaseous hydrogen at hydrogen distribution facilities and hydrogen fuelling stations for proton exchange membrane (PEM) fuel cells for road vehicles.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 19880-1, Gaseous hydrogen — Fuelling stations — Part 1: General requirements

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>

— IEC Electropedia: available at <u>http://www.electropedia.org/</u>

3.1

authority having jurisdiction

AHJ

organization, office or individual responsible for approving a facility along with an equipment, an installation, or a procedure

3.2

indicator species

one or more *constituents* (3.3) in the gas stream which can signal the presence of other chemical constituents because it has the highest probability of presence in a fuel produced by a given process

3.3

constituent

component (or compound) found within a hydrogen fuel mixture

3.4

contaminant

impurity (3.9) that adversely affects the components within the *fuel cell system* (3.6) or the hydrogen storage system

Note 1 to entry: An adverse effect can be reversible or irreversible.

3.5

filter

equipment to remove undesired particulates (3.15) from the hydrogen

3.6

fuel cell system

power system used for the generation of electricity on a *fuel cell vehicle* (3.7), typically containing the following subsystems: fuel cell stack, air processing, fuel processing, thermal management, and water management

3.7

fuel cell vehicle

FCV

vehicle which stores hydrogen on-board and uses a *fuel cell system* (3.6) to generate electricity for propulsion

3.8

fuelling station

facility for the dispensing of compressed hydrogen vehicle fuel, including the supply of hydrogen, and hydrogen compression, storage, and dispensing systems

Note 1 to entry: Fuelling station is often referred to as hydrogen fuelling station or hydrogen filling station.

3.9

impurity

non-hydrogen component in the gas stream

3.10

irreversible damage

irreversible effect

effect, which results in a permanent degradation of the fuel cell power system performance that cannot be restored by practical changes of operational conditions and/or gas composition

3.11

monitoring

act of measuring the *constituents* (3.3) of a hydrogen stream or process controls of a hydrogen production system on a continuous or semi-continuous basis by on-site equipment

3.12

non-routine, adjective

not in accordance with established procedures

3.13

on-site supply

hydrogen fuel supplying system with a hydrogen production system in the same site

3.14

off-site supply

hydrogen fuel supplying system without a hydrogen production system in the same site, receiving hydrogen fuel which is produced out of the site

3.15

particulate

solid or liquid such as oil mist that can be entrained somewhere in the delivery, storage, or transfer of the hydrogen fuel entering a *fuel cell system* (3.6)

3.16

purifier

equipment to remove undesired *constituents* (3.3) from the hydrogen

Note 1 to entry: Hydrogen purifiers may comprise purification vessels, dryers, *filters* (3.5), and separators.

3.17

quality assurance

part of quality management focused on providing confidence that quality requirements will be fulfilled

3.18

quality control

part of quality management focused on fulfilling quality requirements

3.19

quality plan

documentation of quality management

3.20

reversible damage

reversible effect

effect, which results in a non-permanent degradation of the fuel cell power system performance that can be restored by practical changes of operational conditions and/or gas composition

3.21

risk

combination of the probability of occurrence of harm and the *severity* (3.26) of that harm, encompassing both the uncertainty about and severity of the harm

3.22

risk assessment

determination of quantitative or qualitative value of risk (3.21) related to a specific situation and a recognized threat also called a hazard

3.23

risk level

assessed magnitude of the risk (3.21)

3.24

routine, adjective

in accordance with established procedures

3.25

sampling

act of capturing a measured amount of hydrogen for chemical analysis by external equipment

3.26

severity

measure of the possible consequences for fuel cell cars if filled with H_{2} containing higher level of *impurities* (3.9) than the threshold value

Abbreviated terms 4

Abbreviated term	Definition
Halogens	total halogenated compounds
HDS	hydrodesulphurization
РЕМ	proton exchange membrane
PSA	pressure swing adsorption
SC	severity class
SMR	steam methane reforming
ТНС	total hydrocarbons
TS	total sulphur compounds
TSA	temperature swing adsorption

5 Hydrogen specifications

The quality requirements of hydrogen fuel dispensed to PEM fuel cells for road vehicles are listed in ISO 14687-2.

6 Quality control approaches

6.1 General

There are two common methods to control the quality of hydrogen at a fuelling station, by spot sampling and continuous monitoring. These methods can be used individually or together to ensure hydrogen quality levels.

6.2 Sampling

Spot sampling at a fuelling station involves capturing a measured amount for chemical analysis. Sampling is used to perform an accurate and comprehensive analysis of impurities which is done externally, typically at a laboratory. Since the sampling process involves drawing a sample of gas, it is typically done on a periodic basis and requires specialized sampling equipment and personnel to operate it. Sampling procedures shall conform to ISO 19880-1. The advantage of spot sampling is that a more detailed laboratory analysis can be conducted on the sample. The disadvantage of spot sampling is that it is not continuous and results in a detail analysis of a single point in time.

6.3 Monitoring

A fuelling station can have real time monitoring of the hydrogen gas stream for one or more impurities on a continuous or semi-continuous basis. A critical impurity can be monitored to ensure it does not exceed a critical level, or monitoring of indicator species are used to alert of potential issues with the hydrogen production or purification process. Monitoring equipment is installed in line with the hydrogen gas stream and shall meet the process requirements of the fuelling station, as well as be calibrated on a periodic basis. Continuous monitoring compliments spot sampling by offsetting the disadvantages.

7 Potential sources of impurities

For a given fuelling station, the contaminants listed in the hydrogen specification referred to in <u>Clause 5</u> may or may not be potentially present. There are several parts of the supply chain where impurities can be introduced. The potential impurities in each step of the supply chain are described in <u>Annex D</u>.

When a contaminant is classified as potentially present, it shall be taken into account in the quality assurance methodology (risk assessment or prescriptive approach) described in <u>Clause 8</u>.

8 Hydrogen quality assurance methodology

8.1 General

A quality assurance plan for the entire supply chain shall be created to ensure that the hydrogen quality will meet the requirements listed in <u>Clause 5</u>. The methodology used to develop the quality assurance plan can vary but shall include one of the two approaches described in this document. The general description of these two approaches are described in <u>8.2</u> and <u>8.3</u>. Examples of these approaches 1) prescriptive approach and 2) risk assessment for hydrogen quality, are presented in <u>Annexes A</u>, <u>B</u> and <u>C</u>, respectively. The quality assurance plan for the fuelling station shall include the following to ensure hydrogen quality is properly maintained:

identification of potential impurities;

- methods to control and remove these impurities;
- sampling impurities and frequency;
- monitoring of impurities or process controls;
- description of solid and liquid particulate filters;
- cleanliness and maintenance procedures.

It is important to understand that quality should be maintained throughout the complete supply chain of the product (from production source to fuelling station nozzle), such that the impurities that are given in the specification remain below the threshold values.

Each component of the supply chain shall be investigated taking into account the already existing barriers for a given contaminant.

NOTE An effective quality control approach can further ensure the quality of the hydrogen by providing a proactive means to identify and control potential quality issues which can include sampling and monitoring. Additionally, use of quality assurance can improve the decision making if a quality problem arises.

8.2 Prescriptive methodology

The prescriptive approach to hydrogen quality assurance considers potential sources of contaminants and establishes a fixed protocol for analysing and addressing potential contaminants. The prescriptive approach can be applied for the clearly identified supply chain.

The prescriptive quality assurance plan shall be determined taking into account all hydrogen production methods, hydrogen transportation methods and non-routine procedures which exists in the area where the assurance plan is applicable.

NOTE <u>Annex C</u> presents Japanese hydrogen quality guidelines which is an example of a prescriptive quality assurance plan.

8.3 Risk assessment methodology

The risk assessment approach determines the probability to have each impurity above the threshold values of specifications given in <u>Clause 5</u> and evaluates severity of each impurity for the fuel cell vehicle (see <u>Annex A</u>). As an aid to clearly defining the risk(s) for risk assessment purposes, three fundamental questions are often helpful:

- What can go wrong: which event can cause the impurities to be above the threshold value?
- What is the likelihood (probability of occurrence expressed relative to the number of fuelling events) that impurities can be above the threshold value?
- What are the consequences (severity) for the fuel cell vehicle?

In doing an effective risk assessment, the robustness of the data set is important because it determines the quality of the output. Revealing assumptions and reasonable sources of uncertainty will enhance confidence in this output and/or help identify its limitations. The output of the risk assessment is a qualitative description of a range of risk. To determine the probability of the occurrence that impurities in hydrogen exceed the threshold value, <u>Table 1</u> defines the occurrence classes.

Occurrence class	Class name	Description	Occurrence or frequency
0	Very unlikely (Practically impossible)	Contaminant above threshold never been observed for this type of source in the industry	Never

Table 1 — Occurrence classes for an impurity

Occurrence class	Class name	Description	Occurrence or frequency
1	Very rare	Known to occur in the industry for the type of source/Supply chain considered	1 per 1 000 000 fuellings
2	Rare	Has occurred more than once/ year in the Industry	1 per 100 000 fuellings
3	Possible	Has occurred repeatedly for this type of source at a specific location	1 out of 10 000 fuellings
4	Frequent	Occurs on a regular basis	Often

Table 1 (continued)

If the occurrence class is unknown, then the risk assessment shall assume the worst case. In addition, the experience of the hydrogen supplier, station manufacturer/installer should be taken into account when performing the risk analysis.

The range of severity classes (level of damage for vehicle) is defined in <u>Table 2</u>.

Table 2 — Severity classes for an impurity

		Im	pact categories	S
Severity class	FCV performance impact or damage	Performance impact	Hardware impact temporary	Hardware impact permanent
0	— No impact	No	No	No
1	 Minor impact Temporary loss of power No impact on hardware Vehicle still operates 	Yes	No	No
2	 Reversible damage Requires specific light maintenance procedure Vehicle still operates 	Yes or No	Yes	No
3	 Reversible damage Requires specific immediate maintenance procedure Gradual power loss that does not compromise safety 	Yes	Yes	No
4 a	 Power loss or Vehicle Stop that compromises safety Irreversible damage 	Yes	Yes	No
	 Requires major repair procedure (e.g. stack change) 		No	Yes

The final risk is defined by the acceptability table (<u>Table 3</u>) which combines results from <u>Tables 1</u> and <u>2</u>:

Probability per one	0			Severity		
fuelling	Occurrence	0	1	2	3	4
Frequent: Often	4	+	*	*	*	*
Possible: 10 ⁻⁴	3	+	0	*	*	*
Rare: 10 ⁻⁵	2	+	+	0	*	*
Very Rare: 10 ⁻⁶	1	+	+	+	0	*
Practically Impossible	0	+	+	+	+	+
Кеу	+ Acceptable risk a controls su		Further inve needed: exist or control n eno	estigation is ting barriers nay not be	Unaccept additional	* able risk; control or required

Table 3 — Combined risk assessment

NOTE 1 It is possible that contamination of a vehicle at severity class 1 or 2 is not noticeable immediately, thereby making it difficult to identify the source of the contamination.

If a vehicle is found to have hydrogen with contamination that exceeds the specification in <u>Clause 5</u> and the source is unknown, the procedures in <u>Clause 11</u> shall be followed.

For each impurity of the specification and for a given fuelling station (including the supply chain of hydrogen), a risk assessment shall be applied to define the global risk.

NOTE 2 Risk control includes decision making to reduce and/or accept risks. The purpose of risk control is to reduce the risk to an acceptable level.

The amount of effort used for risk control should be proportional to the significance of the risk. Decision makers might use different processes, including benefit-cost analysis, for understanding the optimal level of risk control. Risk control can focus on the following questions:

- Is the risk above an acceptable level?
- What can be done to reduce or eliminate risks?
- What is the appropriate balance among benefits, risks and resources?

For each level of risk, a decision shall be taken in order to either refuse the risk and find mitigation or barriers to reduce it, or accept the risk level as it is. Risk reduction focuses on processes for mitigation or avoidance of quality risk when it exceeds an acceptable level ("o" or "*" zone in <u>Table 3</u>). Risk reduction typically includes actions taken to mitigate the severity and/or probability of occurrence. However, this document only deals with the mitigation of probability of occurrence.

8.4 Impact of impurities on fuel cell powertrain

It is necessary to evaluate the possible consequences on a fuel cell car if each impurity exceeds the ISO 14687-2 threshold value. The impact for the car will depend on the concentration of the contaminant. Table 4 shows a summary of the concentration-based impact of the impurities on the fuel cell. The contaminants and their chemical formulas are given in the first two columns of Table 4.

An estimation of the exceeded concentration above the ISO 14687-2 threshold value for each impurity is named "Level 1" and is given in column 5. According to this concentration a severity class is given in column 4 for each impurity. This severity class covers the impact of this impurity above the threshold value up to this limit.

If higher concentrations that exceed Level 1 can be reached, the severity class is given in column 6.

Impurity		ISO 14687-2 threshold value ^a	Severity class (from ISO 14687-2 to Level 1)	Level 1 value	Severity class (greater than Level 1 threshold)
		[µmol/mol]		[µmol/mol]	
Total non-H ₂ gases		300	1	UD	UD
Total nitrogen and argon	N ₂ , Ar	100	1 ^b	300 ^a	4
Oxygen	02	5	UD	UD	4 ^c
Carbon dioxide	C0 ₂	2	1	3	4
Carbon monoxide	CO	0,2	2-3 ^d	1	4
Methane	CH ₄	100	1	300	4
Water	H ₂ 0	5	4	5	4
Total sulphur compounds	H ₂ S basis	0,004	4	>0,004	4
Ammonia	NH ₃	0,1	4	>0,1	4
Total hydrocarbons	CH ₄ basis	2	1-4 ^d	>2	4
Formaldehyde	CH ₂ O	0,01	2-3 ^d	1	4
Formic acid	НСООН	0,2	2-3 ^d	1	4
Halogens		0,05	4	>0,05	4
Helium	Не	300	1	300	4
Maximum particulate concentration (liquid and solid) ^e		1 mg/kg	4	>1 mg/kg	4

Table 4 — Impact of impurities on fuel cell powertrain

Кеу

UD: Undertermined

^a The threshold value is according to hydrogen specification of ISO 14687-2.

^b At the time of publication, the revision of the threshold limit for inert gases (N_2 +Ar+He) is undergoing. When the threshold limit is changed from 100 µmol/mol to 300 µmol/mol, severity class for inert gases in a range of 100 µmol/mol to 300 µmol/mol will be 0.

^c Data is lacking to confirm the Level 1 concentration and severity class for oxygen;, therefore, the most conservative approach of severity class 4 should be taken unless demonstrated otherwise.

^d A higher value is to be considered for risk assessment approach until more specific data is available.

Particulates are based upon mass density mg/kg.

9 Routine quality control

Routine analysis is performed on a periodic basis once every specified time period or once for each lot or batch. The methodology selected in the hydrogen quality assurance plan determines the type and frequency of the routine analysis. A prescriptive methodology may be used as described in <u>8.1</u> or a risk assessment methodology may be used (<u>8.2</u>). Information on the routine analysis for each step of the supply chain is provided in <u>Annex E</u>.

10 Non-routine quality control

The hydrogen quality plan shall identify any non-routine conditions and subsequent required actions. Some common non-routine conditions include the following:

 a new production system is constructed at a production site or a new fuelling station is first commissioned;

- the production system at a production site or fuelling station is modified;
- a routine or non-routine open inspection, repair, catalyst exchange, or the like is performed on a
 production system at the production site or fuelling station;
- any severe malfunctions of a transportation system of compressed hydrogen, liquid hydrogen, and hydrogen pipeline occur;
- a question concerning quality is raised when, for example, there is a problem with a vehicle because of hydrogen supplied at the production site or fuelling station, and a claim is received from a user directly or indirectly;
- an issue concerning quality emerges when, for example, a voluntary audit raises the possibility that quality control is not administered properly; or
- analysis is deemed necessary for testing, research, or any other purposes.

11 Remedial measures and reporting

If a fuelling station dispenses hydrogen which does not meet the requirements in <u>Clause 5</u>, the fuelling station operator shall immediately prevent any further dispensing until repaired, and notify the station owner/operator as soon as possible, as well as the authorities having jurisdiction. The fuelling station owner/operator shall also review and update quality assurance methodologies to prevent future contamination.

Annex A

(Informative)

Impact of impurities on fuel cell powertrains

A.1 General

This annex gives a brief description of the impact of impurities on the stack, fuel cell components, and the complete fuel cell powertrain. Detailed information can be found in the relevant literature and journal publications. It shall be noted that this annex refers to known impurities and their effects on the fuel cell powertrain at the time of publication. It cannot be excluded that other impurities exist. Furthermore, in most cases only the impact of a single impurity has been investigated and there is still the need for fundamental research regarding the impact of a combination of the different impurities on the fuel cell powertrain.

A.2 Inert gases

The main effect due to the presence of inert gases such as Ar and N_2 is to lower the cell potential due to the dilution effect of the inert species (dilution of the hydrogen gas) and inertial (diffusion) effects. Nevertheless, under consideration of the threshold value current stack designs, fuel cell components and fuel cell powertrains are not adversely affected by inert constituents. High inert gas concentrations will lead to power losses, increased fuel consumption, and loss of efficiency. Furthermore, H_2 starvation caused by high inert gas concentrations may lead to permanent damage of the fuel cell stack or vehicle stop. Inert gases will accumulate in the anode loop and may affect venting and recycle blower control. Further sources report that the presence of N_2 hinders desorption of adsorbed CO from the surface of the anode catalyst. It should also be noted that inert gases can affect the accuracy of mass metering instruments for hydrogen dispensing.

A.3 Oxygen

Oxygen may have a detrimental effect on the fuel cell anode, but the concentration where this effect occurs is not fully known. Higher levels of oxygen may have an impact on metal hydride storage materials.

A.4 Carbon dioxide

The contamination effects of CO_2 depend on the concentration, fuel cell operation conditions, and anode catalyst composition. Firstly, CO_2 dilutes the hydrogen gas and may affect venting and recycle blower control of the fuel cell powertrain. Furthermore, very high concentrations of CO_2 can be catalytically converted via a reverse water gas shift reaction into CO which in consequence poisons the catalyst. In addition, co-occurrence of CO and CO_2 in hydrogen has an accumulated influence on cell performance. CO_2 may adversely affect on-board hydrogen storage systems using metal hydride alloys.

A.5 Carbon monoxide

Carbon monoxide causes severe catalyst poison that adversely affects the performance of the fuel cell powertrain. CO binds strongly to Pt sites, resulting in the reduction of the effective electrochemical surface area available for H_2 adsorption and oxidation. The catalyst poison effect is strongly related to the concentration of CO, the exposure time, the cell operation temperature and anode catalyst types. Although the effects of CO on the fuel cell can be reversed through mitigating strategies, such as material selection of membrane electrode assembly, system design and operation, the life time effects

of CO on performance is a strong concern. The lower catalyst loadings needed for cost optimization and longer hydrogen protection times especially lead to more severe poisoning effects. Therefore, CO needs to be kept at very low levels in hydrogen fuel.

A.6 Methane

Methane is one of the very few hydrocarbons that does not contaminate PEM fuel cells. It does not react with the catalyst, so dilution is the major effect that shall be considered with methane gas.

A.7 Water

Water is an issue for hydrogen dispensing systems, in the on-board vehicle tank system or fuel cell components due to the formation of ice. Excess water can exist in a liquid state and can cause corrosion of metallic components. Low quantities could lead to severe impacts on the components. Furthermore, water affects the function of the stack. Water provides a transport mechanism for water-soluble impurities, especially as a solvent for cations like Na⁺, K⁺, Ca²⁺, Cs⁺ and NH₄⁺ when present as an aerosol. The cations absorb to and block the functional groups of the ionomer thereby reducing the proton conductivity of the membrane. Water is only a concern for the stack in very large quantities. It can lead to water management issues that may limit the current and increase in over-potential. Water should remain gaseous throughout the operating conditions of system. It is believed that water affects the metal hydride life cycle due to exothermic reactions.

A.8 Total sulphur compounds

Sulphur containing compounds are severe catalyst poisons that at even very low levels can cause irreversible degradation of fuel cell performance. The specific sulphur compounds that are addressed are in particular: hydrogen sulphide, sulphur dioxide, carbonyl sulphide, carbon disulphide, methyl mercaptan. Beside these specific compounds further sulphur compounds can exist. The adsorption of the sulphur-containing species to the active sites of the catalyst prevents the hydrogen from adsorbing at the catalyst surface resulting in a significant drop in performance. The reactions of the adsorbed sulphur compounds result in the formation of the very stable platinum sulphide which makes it impossible to recover the fuel cell catalyst from contamination. Lower catalyst loadings are particularly susceptible to catalyst poisoning contaminants.

A.9 Ammonia

Ammonia contamination causes some irreversible fuel cell performance degradation by reducing the proton conductivity of the ionomer. NH_3 migrates into the membrane and reacts with protons to NH_4^+ which then absorb to and block the functional groups of the ionomer. The level of deterioration depends on both the NH_3 concentration and exposure time. Performance decay is also attributed to the adsorption of ammonia on the catalyst surface blocking the active sites.

A.10 Total hydrocarbons

Different hydrocarbons have different effects on fuel cell performance. The main effect is the adsorption on the catalyst layer, reducing the catalyst surface area and thereby decreasing the cell performance. Another effect is the decomposition into carbon monoxide, which then adsorbs on the catalyst layer. The severity of the effect depends on the type of hydrocarbon. Generally aromatic hydrocarbons adsorb more strongly on the catalyst surface than other hydrocarbons inhibiting access to hydrogen. Acids, aldehydes, etc. degrade performance. Phthalates, squalene, erucamide which could be found in seals and hoses will cause problems on the stack side. CH_4 is considered an inert constituent since its effect on fuel cell performance is to dilute the hydrogen fuel stream (see A.5).

A.11 Formaldehyde

Formaldehyde has a similar effect on fuel cell performance as carbon monoxide. The adsorption process of formaldehyde on the catalyst is the same as for CO followed by an immediate conversion of the CH_2O to $CO + H_2$. The adsorption of the produced CO on the catalyst layer leads to a reduction of the catalytic surface area which decreases the cell performance. Contamination due to formaldehyde can be recovered by changing the cell voltage and by purging with pure hydrogen. Therefore, formaldehyde can be considered as a reversible contaminant with the same impact on the fuel cell as for CO. Lower catalyst loadings are particularly susceptible to catalyst poisoning contaminants.

A.12 Formic acid

Formic acid has a similar effect on fuel cell performance as carbon monoxide. Under certain operating conditions CO is a possible intermediate during the adsorption process of formic acid and the subsequent reaction of HCOOH to $CO_2 + H_2$. The adsorption of the intermediate CO product on the catalyst layer leads to a reduction of the catalytic surface area which decreases the cell performance. Contamination due to formic acid can be recovered by changing the cell voltage and by purging with pure hydrogen. Therefore, formic acid can be considered as a reversible contaminant with the same impact on the fuel cell as for CO. Lower catalyst loadings are particularly susceptible to catalyst poisoning contaminants.

A.13 Halogenated compounds

Halogenated compounds adsorb on the catalyst layer, reduce the catalytic surface area, and decrease the cell performance. The performance degradation caused by halogenated compounds is an irreversible effect. The biggest concern is about chlorine in hydrogen from electrolysis of water. Chloride for example promotes the dissolution of Pt by the formation of soluble chloride complexes and subsequent deposition in the fuel cell membrane. Potential sources include chloralkali production processes, refrigerants used in processing, and cleaning agents.

A.14 Helium

The main effect due to the presence of helium is to lower the cell potential due to the dilution effect of the inert species (dilution of the hydrogen gas) and inertial (diffusion) effects. It should be considered that hydrogen sensors show interference with helium. Higher inert gas concentrations may also affect the venting and recycle blower control. Current stack designs are not adversely affected by higher inert gas concentrations. Nevertheless, higher inert gas concentrations will lead to power losses, increased fuel consumption, and loss of fuel cell efficiency.

A.15 Solid and liquid particulates (aerosols)

Aerosols are dispersed solid and/or liquid particles in a gas. These particulates may be introduced in the production, storage, or delivery of hydrogen fuel. A maximum solid and liquid particle concentration is specified to ensure that filters are not clogged and/or solid and liquid particles do not enter the fuel system and affect operation of fuel system components and fuel cell stacks. A maximum particulate size diameter is not specified yet but should be addressed in a fuelling station standard and/or future revision of ISO 14687-2. Particulate sizes should be kept as small as possible.

There are various effects of station operating fluids and solid particulates on the stack, fuel cell components, and the complete fuel cell powertrain. These particulates originate from the operation of hydrogen fuelling stations and show severe impacts. This group of substances comprises cleaning agents, oils, lubricant oils, siloxanes, ionic liquids, decomposition products of ionic liquids, additives, metals, metal oxides, and metal ions. One effect of these substances is the adsorption to the active site of the fuel cell catalyst which prevents the hydrogen from adsorbing at the catalyst surface resulting in significant performance drop. Other effects are the reduction of the proton conductivity of the membrane, impact on storage systems, and interference of H_2 sensors. Generally, the use of operating fluids shall be minimized as far as possible. If the use of operating fluids is mandatory, means shall

be provided by the hydrogen fuelling station to hinder these operating fluids from contaminating the vehicle fuel cell powertrain.

The contamination due to aerosols is of extreme importance as illustrated by the following example using SnO₂, the oxide of the tetravalent tin as a model substance. This heavy metal oxide is present in the solid state of matter with a molar mass of $M_{SnO2} = 150,69 \text{ g} \cdot \text{mol}^{-1}$ and a density of $\rho_{SnO2} = 6,95 \text{ g} \cdot \text{cm}^{-3}$ at 20 °C. Under the assumption of a spherical particle shape with a diameter of $d_{\text{particle}} = 0,1 \text{ µm}$ and under consideration of the Avogadro Constant $N_A = 6,022 \cdot 10^{23} \text{ mol}^{-1}$ the number of SnO₂-molecules n_{SnO2} in the particle can be calculated as follows:

$$n_{\rm SnO_2} = \frac{\pi \cdot d_{\rm particle}^3 \cdot \rho_{\rm SnO_2}}{6 \cdot 10^{15} \cdot M_{\rm SnO_2}} \cdot N_{\rm A}$$
(A.1)
$$n_{\rm SnO_2} = 1,45 \cdot 10^7$$
(A.2)

These 14,5 million SnO_2 molecules can lead to irreversible impacts in microelectronic structures. Therefore it is necessary to filter out any solid and liquid particles close to the fuelling nozzle to prevent any impact on the fuel cell powertrain.

Annex B

(informative)

Example of risk assessment

B.1 Centralized production, pipeline transportation

The different steps for elaborating the quality assurance plan of one fuelling station are illustrated using the following case: one fuelling station delivered by pipeline from an off-site SMR.

The solutions selected in this example to decrease the risk when necessary are given as a possible solution for this specific case. Other solutions may be chosen depending on each fuelling station.

Following the procedure described in <u>Clause 8</u>, the risk assessment is performed on the identification of the probability to have each impurity above the threshold values of specifications and the evaluation of severity for the fuel cell vehicle, assuming some values of impurities above the specification (see <u>Table B.1</u>, <u>Table B.2</u> and <u>Table B.3</u>). This risk assessment is done for each part of the supply chain: SMR, pipeline distribution and fuelling station itself.

B.2 Steam methane reformation

B.2.1 General

In this process, methane from natural gas and steam react at a high temperature to produce synthesis gas (or syngas). Syngas is a mixture consisting mainly of hydrogen and carbon monoxide.

In order to achieve the reaction between natural gas and steam, catalysts and a high temperature are required. These catalysts are poisoned by any trace of sulphur or chlorinated compounds. It is then necessary to remove all sulphur components from natural gas before the SMR reaction. The purification system, named hydrodesulphurisation is a two steps process: first transformation of all sulphur species in H_2S and then adsorption of H_2S in specific adsorbents. At the outlet of this purification step, the natural gas contains less than 50 nmol/mol of H_2S by design and less than 10 nmol/mol in normal conditions.

After the reforming reaction, the carbon monoxide is further reacted with steam in a water gas shift reaction. It produces carbon dioxide and hydrogen and it increases the hydrogen yield. An additional separation step is mandatory to provide hydrogen with a purity suitable for FCV application.

B.2.2 Purification by pressure swing adsorption

Pressure swing adsorption is a non-cryogenic gas separation process which uses adsorbent technology to purify hydrogen from a gas mixture. PSA principle is based on preferential adsorption of some gaseous components to others on highly porous materials. The PSA ability to trap impurities depends on the affinity between the adsorbent and the gas molecule. Typically a PSA column is filled with multiple adsorbents with very high surface area to volume ratios. Typical adsorbents include silica, alumina, molecular sieves, and activated carbons, which have different relative strength of adsorption depending on the gaseous compounds.

obability of occurrence for off-site SMR	
bability of occurrer	
Table B.1 — Pro	

Impurity	Impurity Threshold	Possible causes For the source studied	Typical barriers employed in this process	Probabil- ity with barriers
Inert gas N2	100	Present in natural gas and syngas PSA malfunction	— PSA — Double analysis PSA outlet <100 µmol/mol	с
Inert gas Ar		Only ATR and POx present in O ₂ typical 0,6 % in syngas from ATR	 PSA. Not sized to remove Ar. Ar content may be higher if H₂ comes from ATR, POX or feeds with high Ar content 	5
02	ъ	Not present in syngas. O_2 is unstable in the condition of reforming and shift reactions. Combines with H_{2} , C0 CH_4	 PSA cannot be used with significant O₂ content for safety reasons 	0
C0 ₂	2	Present in syngas (%)	 PSA adsorption strength of MS, activated carbon, silicagel higher for CO₂ than CO. A CO content lower than 10µmol/mol insures a CO₂ content lower than 2 µmol/mol 	0
CO	0,2	Normal operation below threshold. Occasional peaks at µmol/mol level	$-$ Double analysis at the PSA outlet + trip if the CO>1-10 μ mol/mol at PSA outlet	4
$C H_4$	100	Present in syngas at % level	— In most cases CO is sizing the PSA, therefore CO<10 μ mol/mol/mol ==> C H ₄ < 100 μ mol/mol depending on users' specification (Europe pipeline 2 μ mol/mol).	2
H_2O	5	Syngas saturated in H ₂ 0	$-$ PSA adsorbed in alumina and MS adsorption strength higher than CO_2. A CO content lower than 10 μ mol/mol insures a H_2O content lower than 5 μ mol/mol.	0

Impurity	Impurity Threshold	Possible causes For the source studied	Typical barriers employed in this process	Probabil- ity with barriers
	μmol/mol			
			 Desulphuration upstream reformer (typical values: normal < 10 ppb, maximum < 20 ppb, guarantee < 50 ppb.) 	
			- Typical dilution factor 2,5 (1mole natural gas produces 2,5 mole $\rm H_2$)	
			— Pre-reformer catalyst poisoning by sulphur is irreversible. Sulphur trapped at this stage. In case of breakthrough, process condition cannot be achieved	
TS	0,004	TS from natural gas	 Reformer catalyst poisoning by sulphur is irreversible. Sulphur trapped at this stage. In case of breakthrough, process condition cannot be achieved 	0
			 Shift catalyst poisoning by sulphur is irreversible. Sulphur trapped at this stage. In case of breakthrough, process condition cannot be achieved 	
			H ₂ S adsorption in pipe and vessels. Strong affinity with steel	
$\rm NH_3$	0,1	Traces present in syngas	 PSA adsorption strength of alumina and molecular sieve higher than CO. A CO content lower than 10μmol/mol insures a NH₃ content lower than 0,1 μmol/mol 	0
THC	2	Traces of C2+ after reforming reaction	— PSA C2 C3, C4, C5+adsorbed by activated carbon layer. A C0 content lower than 10 μ mol/mol insures a THC (C H ₄ excluded) content lower than 2 μ mol/mol	0
нсно	0,01	May be present in syngas. essentially liquid	— PSA. Formaldehyde adsorption strength of alumina and molecular sieve higher than CO. A CO content lower than 10 μ mol/mol insures a HCHO content lower than 0,1 μ mol/mol. To guarantee 0,01 μ mol/mol would require more experience of measuring at those levels	1
НООЭН	0,2	May be present in syngas essentially liquid	$-$ PSA. Formic adsorption strength of alumina and molecular sieve higher than C0. A C0 content lower than 10 μ mol/mol insures a HC00H content lower than 0,2 μ mol/mol	0

able B.1 (continued
Ľ.	able B.

Impurity	Impurity Threshold	Possible causes For the source studied	Typical barriers employed in this process	Probabil- ity with
	μmol/mol			naitieis
			 Any Cl present in natural gas would be stopped by HDS 	
			 Pre-reformer catalyst poisoning by Cl irreversible Cl trapped at this stage. If breakthrough, process condition cannot be achieved 	
Halogens	0,05	Present in natural gas		0
			 Shift catalyst poisoning by Cl irreversible. Cl trapped at this stage. I break through, process condition cannot be achieved 	
			PSA adsorption of Cl before CO, CO ₂ , species	
Не	300	Not present in natural gas in N Europe (<10 µmol/mol). Passes through the whole process. Dilution factor 2,5		0

Impurity	Threshold	Causes possible For the item studied	Typical barriers employed in this process	Probability with barriers
	µmol/mol			
Inert gas N ₂	100	Air intake if some areas are at negative pressure From seal gas or purge gas Wrong purging after maintenance	Inlet pressure PSL trip on compressors	1
Inert gas Ar	100	No potential	1 % Ar in the air. 100 μmol/mol would mean 1 % air in the pipe Never been observed	0
02	5	Air intake if some areas are at negative pressure	Inlet pressure PSL trip on compressors	1
C0 ₂	2	From Air:C $\rm O_2$ at 400 $\mu mol/mol$ in the air	$2 \mu mol/mol of C O_2 would mean 0,5 \% air in the pipe Never been observed$	0
CO	0,2	No potential		0
CH ₄	100	No potential		0
H ₂ O	5	Wrong drying after pressure hydraulic test	$H_2 > 40$ bar ==> leak from H_2O to H_2 unlikely during operation.	0
TS	0,004	No potential		0
NH ₃	0,1	No potential		0
THC	2	No potential		0
НСНО	0,01	No potential		0
НСООН	0,2	No potential		0
Halogens	0,05	From cleaning material after maintenance		1
Не	300	No potential		0

Table B.2 — Probability of occurrence for pipeline

Impurity	Threshold	Causes possible For the source studied	Existing barriers	Probability
	µmol/mol			
Inert gas N ₂		N ₂ purging operation, air intake during normal operation or maintenance		3
Inert gas Ar	100	Air intake during normal operation or main- tenance	1 % Ar in the air. 100 μmol/mol would mean 1 % air in the fuelling station Never been observed	0
02	5	Air intake during normal operation or main- tenance		2
C0 ₂	2	Air intake during normal operation or main- tenance	2 μmol/mol CO ₂ would mean 0,5 % air in the fuelling station. Never been observed	0
CO	0,2	No potential at fuelling station level		0
CH ₄	100	No potential at fuelling station level		0
H ₂ 0	5	Maintenance, leaks from compressor exchangers, improper pressure vessel drying after periodic inspection, H_2O coming from the vent in case of check valve malfunction, depending on fuelling station/compressor technology		2
TS	0,004	Materials gaskets, valve seats and tubing	Material specifications	1
NH ₃	0,1	No potential		0
ТНС	2	Oil carryover from compressor (depending on compressor technology)		2
НСНО	0,01	No potential		0
нсоон	0,2	No potential		0
Halogens	0,05	From degreasing material		1
Не	300	No potential at fuelling station level	If pure He is not used for maintenance	0

When the study has been conducted for each step within the supply chain (i.e. production, distribution, and fuelling) the highest probability is selected as the compounded probability. <u>Table B.4</u> gives an example.

To define the severity class of each impurity as it is presented in <u>Table B.4</u>, some assumptions are made concerning the impurity levels above the threshold value. These impurity levels are assumed to be reached for a short period of time.

assessment
risk
Combined
Ι
B.4
Table

·	Criti- cality		+	+	+	+	+	+ +	+ + +	+ + + +	+ + + +
lual	- Se- - veri- ty			1	0		5	1 2	2 1 4	2 1 4 4	2 1 4 4 4
Residual	Prob- abili- ty			2	2	0		5 7	0 0	0 0 52 1	0 0 0 2 1
	Severity reduction measures		None	None	None	None					
	Additional risk reduction measures		Systematic N ₂ analysis after shutdown before resuming operation or specific purging procedure				C0 absorber at fuelling station design margin 100 % + operation procedure for replacement when H_2 quantity puri- fied = 50 % of design capacity.	CO absorber at fuelling station design margin 100 % + operation procedure for replacement when H_2 quantity purified = 50 % of design capacity.	CO absorber at fuelling station design margin 100 % + operation procedure for replacement when H ₂ quantity puri- fied = 50 % of design capacity. Check H ₂ O at commissioning and after maintenance involving opening of vessels or piping. Measurement shall be done at appropriate location downstream of the considered vessel or piping	C0 absorber at fuelling station design margin 100 % + operation procedure for replacement when H ₂ quantity puri- fied = 50 % of design capacity. Check H ₂ O at commissioning and after maintenance involving opening of vessels or piping. Measurement shall be done at appropriate location downstream of the considered vessel or piping Check TS at commissioning and after maintenance involving parts modifi- cation (piping, valves, seals, gaskets). Not required for part replaced by identical component	C0 absorber at fuelling station design margin 100 % + operation procedure for replacement when H ₂ quantity puri- fied = 50 % of design capacity. Check H ₂ O at commissioning and after maintenance involving opening of vessels or piping. Measurement shall be done at appropriate location downstream of the considered vessel or piping Check TS at commissioning and after maintenance involving parts modifi- cation (piping, valves, seals, gaskets) Not required for part replaced by identical component
	Severity Criticality		0	+	+	+	*	* +	* + *	* + * *	* + * * +
	Severity		1	1	0	1	7	1 2	4 1 2	2 1 4 4	0 4 4 4
	Compounded probability		3	2	2	0	4	4 2	4 2 1	4 2 1 1	4 1 1 0
lity	Fuelling station		3	0	2	0	0	0 0	0 0 1	0 0 1 1	0 0 1 1 0
Supply chain probability	Pipeline distribution		1	0		0	0	0 0	0 0 0	0 0 0 0	0 0 0 0 0
Supply (Production SMR		3	2	0	0	4	4 2	4 2 0	4 2 0 0	4 2 0 0 0 0
ISO specification	Threshold	μmol/mol	100		ъ	2	0,2	0,2	0,2 100 5	0,2 100 5 0,004	0,2 100 5 0,004 0,1
ISO spec	Impurity		lnert gas N ₂	Inert gas Ar	0_2	CO_2	CO	CO CH ₄	CO CH ₄ H ₂ O	CO CH ₄ H ₂ O TS	CO CH ₄ H ₂ O TS NH ₃

	Criti- cality	+	+	+	+		ttrol or
ual	Se- veri- ty	7	2	4			nal cor ed
Residual	Prob- abili- ty	-	0	0	0	*	additio
	SeverityProb-Se-reductionabili-veri-measurestyty	None	None	None	None		Unacceptable risk; additional control or barriers required
	es			sioning (spe- naintenance			_
	Additional risk reduction measures			Halogenated analysis at commissioning (species shall be defined) or after maintenance		0	Further investigation is needed: existing barriers or control may not be enough
	Criticality	+	+	*	+		Further i barriers
	Severity Criticality	2	2	4	1		controls
	ImpurityThresholdProductionPipelineFuellingCompoundedImpuritySMRdistributionstationprobability	1	0	1	0	+	Acceptable risk area: existing controls sufficient
lity	Fuelling station	0	0	-	0		eptable risl
Supply chain probability	Pipeline Fuelling distribution station	0	0	0	0		Acce
Supply c	Production SMR	1	0	0	0		
ISO specification	Threshold	0,01	0,2	0,05	300		Key
ISO spec	Impurity	НСНО	НООЭН	Halogens	Не		

Table B.4 (continued)

Table B.4 is used to define the criticality for each impurity.

When the result is light grey or "+", the H_2 quality is under control and the risk of having an issue with the vehicle using this hydrogen is considered acceptable. No additional barrier is necessary and this impurity has no reason to be controlled at the fuelling station nozzle.

When the result is medium grey or "o", which is the case for N_2 , the conclusion is to further investigate the means to decrease the occurrence probability. For instance, in addition to the existing analysis at SMR plant, measure N_2 at the commissioning of the fuelling station and after each maintenance where some parts of the system are open to air or apply a specific purge procedure which guarantees reaching a value within the specification.

When the result is dark grey or "*", it is necessary to reduce the probability of occurrence or to decrease the severity to bring back the risk at an acceptable limit. Additional barriers shall be added. These barriers are studied case by case.

For CO the conclusion in this example of risk assessment may be:

- to add a purifier with proper capacity of purification and to define a strict procedure for the purifier replacement, or
- to add a continuous analysis and shutoff valve at the inlet of the fuelling station (at pipeline connection).

For H_2O the conclusion is to measure H_2O at the commissioning of the fuelling station and after each maintenance open vessels or piping or replace one of them. This analysis could be done at low pressure to have more sensitivity.

For THC, depending of the compressor type, add a coalescing filter and proper maintenance procedure. Measure THC after commissioning or maintenance operation involving cleaning/degreasing.

For Halogens, make an analysis at commissioning on a list of predefined components.

In conclusion,

- for commissioning: measure N₂, H₂O, THC, TS , and Halogens;
- after maintenance: measure N_2 , H_2O , THC.

The analysis of other impurities is not mandatory if there is an analysis of CO and N_2 at the production site.

B.3 Alkaline electrolysis

<u>Table B.5</u> shows the probability of occurrence of different contaminants for hydrogen produced by alkaline electrolysis.

Impurity Threshold		Possible causes For the source studied	Typical barriers employed in this process	Probability	
	µmol/mol				
Inert gas N ₂	100	Insufficient purging after shutdown	Electrolyser process control	3	
Inert gas Ar	100	Insufficient purging after shutdown	If N ₂ below 1 %, Ar < 100 μmol/mol	1	
02	Insufficient purging after shutdown (does Process contr			2	
CO ₂	2			0	
CO	0,2			0	
CH ₄	100			0	
H ₂ 0	5	H ₂ from electrolyser is saturated.	Dryer plus water sensor downstream of electrolyser	2	
TS	0,004			0	
NH ₃	0,1			0	
THC (excluding CH ₄)	2			0	
НСНО	0,01			0	
НСООН	0,2			0	
Halogens	0,05	Cl from water?	Any trace of halogenat- ed compounds would be trapped in the dryer which has a stronger adsorption capacity for Cl than for H ₂ O	0	
Не	300			0	

Table B.5 — Probability of occurrence for alkaline electrolysis

Annex C

(informative)

Example of Japanese hydrogen quality guidelines

C.1 General

This annex is a condensed version of the Japanese quality control guidelines developed in Japan and is intended to be an example of a prescriptive approach to hydrogen quality assurance.

C.2 Approaches to administration of Japanese quality control guidelines

The approach to conducting a quality analysis of the contaminants listed in ISO 14687-2 is to first consider the potential sources of contaminants, and, second, establish a protocol for analysing potential contaminants.

- Potential sources of contaminants:
 - sampling procedures;
 - characteristics of hydrogen production method(s);
 - characteristics of hydrogen transport method(s);
 - non-routine procedure (for example maintenance, major production system change).
- Analysis of possible contaminants:
 - possible quantification.

C.3 Hydrogen production methods, hydrogen purification methods and hydrogen transportation methods

C.3.1 Hydrogen production methods

Potential sources of contaminants are evaluated for the following hydrogen production methods:

- steam reforming (off-site/on-site);
- partial oxidation (off-site);
- autothermal reforming (off-site);
- water gas shift reaction (WGSR);
- catalytic reforming (off-site);
- coke-oven gas (COG) (off-site);
- steam cracking for ethylene by-product (off-site);
- chloralkali process (off-site);
- electrolysis of H_2O (on-site/off-site).

C.3.2 Hydrogen purification methods

Potential sources of contaminants are evaluated for the following hydrogen purification methods:

- adsorption;
- membrane separation;
- solvent absorption;
- cryogenic separation;
- methanation;
- selective CO oxidation.

C.3.3 Hydrogen transportation methods

Potential sources of contaminants are evaluated for the following hydrogen transportation methods:

- transportation of hydrogen in compressed state;
- transportation of hydrogen in liquid form;
- pipeline transportation;
- transportation by storage materials.

C.4 Constituents requiring analysis (potential sources of contaminants)

C.4.1 General

An analysis shall be conducted on constituents that may contaminate hydrogen regardless of which hydrogen production method is used, as well as those constituents that may contaminate hydrogen due to the unique nature of a given hydrogen production method (see Table C.1 and Table C.2).

C.4.2 All hydrogen production methods

Та	Table C.1 — Constituents requiring an analysis for all production methods						
Name of constituent	Hydrogen production method to be analysed	Approach					
N ₂	All hydrogen production methods	Perform an analysis on all production methods since there is a risk of contamination through the equipment in case of hydrogen sampling					
02	All hydrogen production methods	Perform an analysis on all production methods since there is a risk of contamination through the equipment in case of hydrogen sampling					
H ₂ O	All hydrogen production methods	Perform an analysis on all production methods since there is a risk of contamination through the equipment in case of hydrogen sampling					
Ar	All hydrogen production methods	Perform an analysis on all production methods since there is a risk of contamination through the equipment in case of hydrogen sampling. The ISO					

iring an analysis for all production mathads T-1-1- C 4

standard specifies the limit as a total combined

value of N₂ and Ar.

C.4.3 Specific hydrogen production methods

Name of constituent	Hydrogen production method to be analysed	Approach
Не	All hydrogen production methods using natural gas as feedstock	An analysis is necessary since natural gas contains up to 300 µmol/mol of He
		Exclude a hydrogen production method if He has been removed from the natural gas used for the method
NH ₃	NH ₃ production process generating excess hydrogen	
	Biogas reforming	
	Coal gasification generating hydrogen by-product	
	NH ₃ hydride method	
Halogens	Chloralkali process producing excess hydrogen*	*Excludes ion exchange membrane method
	Biogas production from plastic waste gener- ating hydrogen	**Limited to cases where tap water is used as feed- stock and the performance of $\rm H_2O$ purification system
	Coke oven gas	cannot be warranted
	Water electrolysis**	
TS	Steam reforming*	*Since TS are found in the form of H ₂ S, analysis o
	Catalytic reforming	H_2S , not total sulphur content, is sufficient
	Partial oxidation	
	Autothermal reforming	
	Coal gasification generating hydrogen by-product	
	Production methods using TS as odorant	
THC	Production methods in which fossil fuels are present, such as steam reforming, catalytic reforming, partial oxidation, autothermal reforming, and coal gasification generating hydrogen by-product	
CO	Steam reforming*	
	Catalytic reforming	
	Partial oxidation	
	Autothermal reforming	
	Coal gasification generating hydrogen by-product	
НСНО		Rationale for excluding steam reforming methods using
нсоон	Hydrogen production methods using city gas or petroleum as fuel other than steam reforming	Rationale for excluding steam reforming methods

Table C.2 — Constituents requiring an analysis for specific production methods

C.5 Constituents that do not require analysis

Listed below in <u>Table C.3</u> are constituents for which there is no scientific basis for conducting a routine analysis, and the rationale for this conclusion, such as when there is no risk of contamination in any

hydrogen production method (a framework shall be provided to conduct a non-routine analysis, however).

Substance	Rationale
Hydrogen	While it is clear that hydrogen is the main component, there is no method for directly determining its quantity to a required degree of accuracy. If the proportion of hydrogen is to be calculated by division, it would be necessary to determine the quantity of all contaminants.
All non-hydrogen gases	There is no method for directly determining their quantity. If the proportion of non-hy- drogen gases is to be calculated by summation, a qualitative determination of all con- taminants would be required.
Particulates	If a filter is installed in the flow path, contamination is highly unlikely. Generally speaking, particulates found at demonstration fuelling station have been lower than the standard upper limit by two digits. Particulates should be controlled as indicated in <u>C.9</u>

C.6 Administration of quality control

C.6.1 Frequency of routine analysis

C.6.1.1 Routine analysis at a centralized production and distribution facility

As a general rule, the product quality of a plant is consistent regardless of the size of its production system, as long as the input and the operating conditions are consistent. If there are no changes in the input and the operating conditions over a long period of time, only one quality analysis shall be needed per operation period. On the other hand, if there are changes in the input and the operating conditions, a quality analysis shall be needed for each condition.

When the input and the operating conditions have not changed and if it can be assured that the possibility of contamination is eliminated by the good operation and control of the distribution facility by, for example, continuously monitoring the indicator species before shipping, the test frequency may be reduced to as low as once per year.

C.6.1.2 Routine analysis at fuelling station

C.6.1.2.1 Off-site fuelling station

Hydrogen received by an off-site fuelling station is subject to a routine analysis for the chemical constituents that have not been covered by the centralized hydrogen production and distribution facility and for those that may infiltrate the gas after it is accepted by the fuelling station. For individual contaminant species that may enter after fuelling station acceptance, the frequency of analysis may be reduced to as low as once per year, provided that the possibility of infiltration is deemed eliminated by having a good operation and control program at the fuelling station, such as a purge procedure.

While sampling is to be, as a rule, made at the end of a nozzle, it may be conducted upstream of the fuelling nozzle to the extent that no changes occur to the quality of hydrogen.

C.6.1.2.2 On-site fuelling station

When a hydrogen generator (such as reformer or H_2O electrolysis apparatus) is operated in the daily start and shut mode, the quality of the hydrogen gas produced fluctuates on a daily basis. Such operation therefore calls for one analysis per day. However, the frequency of analysis may be reduced to as low as once per year, provided that the possibility of infiltration is deemed eliminated by the good operation and control of the fuelling station, such as when accumulators are filled after the indicator species is continuously monitored for quality control on a daily basis following the start-up of the generator.

While sampling is to be, as a rule, made at the end of a nozzle, it may be conducted upstream of the fuelling nozzle to the extent that no changes occur to the quality of hydrogen.

C.6.2 Frequency of non-routine analysis

After the conditions described in <u>Clause 10</u>, a quality analysis of all cases is needed.

C.7 Administration of analysis and monitoring records

C.7.1 Forms for analysis and monitoring records and reports

Each operator is to design and administer forms for records of analyses at its centralized production and distribution facilities, records of sampling and analyses at fuelling station, and records of monitoring.

C.7.2 Safekeeping and recording

Centralized production or distribution facilities and fuelling station are to safekeep their own records of analyses at the facility, of samples collected at the fuelling station, and of monitoring in an appropriate manner.

The records shall be kept for a period of ten years. Such records may be kept at the department (or headquarters) that oversees the operation other than the applicable facilities or fuelling station.

C.8 Routine analysis work

<u>Table C.4</u> provides the routine analysis work defined on the basis of the attitudes stated in <u>C.4</u>, <u>C.5</u> and <u>C.6.1</u>. The table gives the analytical species and the minimum analysis frequencies classified by hydrogen dispensing sites and hydrogen production, purification and transportation methods.

C.9 Non-routine analysis work

<u>Table C.5</u> provides the non-routine analysis work defined on the basis of the attitudes stated in <u>C.4</u>, <u>C.5</u> and <u>C.6.2</u>. The table gives the analytical species classified by hydrogen dispensing sites and hydrogen production, purification, and transportation methods.

C.10 Approaches to particulates requirements

According to ISO 14687-2, the requirements of particulates are no more than 1 mg/kg in concentration. The hydrogen shall be sampled from a dispenser nozzle of the fuelling station under conditions that are as close to the actual fuelling conditions as possible. The weight of the particulates collected in a filter is measured.

However, past analyses of particulates collected by filters at the fuelling station have demonstrated that particulates occur intermittently, and not always consistently, from such sources as pieces of sealing tapes for threaded parts, particles found in new equipment, and friction from movable parts. Therefore, it is questionable whether the concentration of the samples collected by the method described above can be considered representative of a given period of time. For this reason, filters shall be installed at fuelling station to remove particulates in lieu of conducting a routine analysis of particulate concentration levels.

It is appropriate to install filters with an aperture of no more than 5 μ m (nominal) downstream of dispenser components. Filters should be as close as possible to the nozzle or hose breakaway device. Filters shall be mesh-type because of the filter robustness.

Category: Distribution				
Facility type	Sampling/ Monitoring point	Contaminant	Threshold	Reduced frequency
			(µmol/mol)	
		TS ^a	0,004	Annual ^b
Production of hydrogen from hydro-		THC as C1	2	Annual ^b
carbons utilizing steam reforming, catalytic reforming, partial oxidation,	Downstream of the	СО	0,2	Annual ^b
or ATR, purification using refining	purifier	N ₂ +Ar	100	Annual ^{b,c}
equipment, and distribution		H ₂ O	5	Annual ^b
		02	5	Annual ^{b,c}
Electrolysis of Na Cl for hydrogen,	Downstream of the	Halogens	0,05	Annual ^b
purification, and distribution	purifier	N ₂ +Ar	100	Annual ^b
		H ₂ 0	5	Annual ^b
		02	5	Annual ^b
	Downstream of the purifier	TS	0,004	Annual ^b
		THC as C1	2	Annual ^b
		CO	0,2	Annual ^b
		Halogens	0,05	Annual ^b
Purification of coke-oven gas, and		N ₂ +Ar	100	Annual ^b
distribution		H ₂ 0	5	Annual ^b
		02	5	Annual ^b
		NH ₃	0,1	Annual ^b
		НСНО	0,01	Annual ^b
		НСООН	0,2	Annual ^b
		TS	0,004	Annual ^b
		THC as C1	2	Annual ^b
Purification of by-product hydrogen	Downstream of the	СО	0,2	Annual ^b
from ethylene plants, and distribution	purifier	N ₂ +Ar	100	Annual ^b
		H ₂ 0	5	Annual ^b
		02	5	Annual ^b

Table C.4 — Routine analysis work

Category: Fuelling station				
Facility type	Sampling/ Monitoring point	Contaminant	Threshold	Reduced frequency
			(µmol/mol)	
With off-site supply of transported		Those not an- alysed by the distributor		Annual ^b
compressed or liquid hydrogen	End of nozzle	N ₂ +Ar	100	Annual ^{b, c}
		H ₂ 0	5	Annual ^{b,d}
		02	5	Annual ^{b,c}
	Downstream of the deodorant equipment	(Those listed for the odor- ant)		Annual ^{b,e}
With off-site supply from hydrogen pipelines	End of nozzle	Those not an- alysed by the distributor		Annual ^b
		N ₂ +Ar	100	Annual ^{b,c}
		H ₂ 0	5	Annual ^{b,d}
		02	5	Annual ^{b,c}
	Downstream of the purifier	CO	0,2	Continuous and Annual ^{b,f}
With on-site supply of hydrogen	End of nozzle	TS ^a	0,004	Annual ^b
produced from hydrocarbons utilizing		THC as C1	2	Annual ^b
steam reforming, catalytic reforming, partial oxidation, or ATR and purifica-		CO	0,2	Annual ^b
tion using refining equipment		N ₂ +Ar	100	Annual ^{b,c}
		H ₂ 0	5	Annual ^{b,d}
		02	5	Annual ^{b,c}
With on-site supply from hydroelec- trolysis and purification using refin- ing equipment		N ₂ +Ar	100	Annual ^b
	Downstream of the purifier	H ₂ 0	5	Continuous and Annual ^{b,f}
		02	5	Continuous and Annual ^{b,f}
		Halogens	0,05	Annual ^b
	End of nozzle	N ₂ +Ar	100	Annual ^b
	End of nozzie	H ₂ O	5	Annual ^b
		02	5	Annual ^b

Table C.4 (continued)

Category: Distribution				
Facility type	Sampling/ Monitoring point	Contaminant	Standard value	
			(µmol/mol)	
		TS ⁵	0,004	
Production of hydrogen from hydrocar-	-	THC as C1	2	
bons utilizing steam reforming, catalytic	Downstream of the	CO	0,2	
reforming, or partial oxidation or ATR,	purifier	N ₂ +Ar	100	
followed by refinement	-	H ₂ 0	5	
		02	5	
		Halogens	0,05	
Hydrogen production using brine electroly-	Downstream of the	N ₂ +Ar	100	
sis, followed by purification	purifier	H ₂ 0	5	
		02	5	
		TS	0,004	
	Downstream of the purifier	THC as C1	2	
		CO	0,2	
		Halogens	0,05	
Purification of coke-oven gas, and distribu-		N ₂ +Ar	100	
tion		H ₂ O	5	
		02	5	
		NH ₃	0,1	
		НСНО	0,01	
		НСООН	0,2	
		TS	0,004	
		THC as C1	2	
Purification of by-product hydrogen from	Downstream of the	CO	0,2	
ethylene plants, and distribution	purifier	N ₂ +Ar	100	
		H ₂ O	5	
		02	5	

Table C.5 — Non-routine analysis work

Category: Fuelling station				
Facility type	Sampling/ Monitoring point	Contaminant	Standard value	
			(µmol/mol)	
		Those not analysed by the distributor		
With off-site supply of transported com- pressed or liquid hydrogen	End of nozzle	N ₂ +Ar	100	
pressed of fiquid flydrogen		H ₂ 0	5	
		02	5	
	Downstream of the deo- dorant equipment	(Those listed for the odorant)		
With off-site supply from hydrogen pipelines		Those not analysed by the distributor		
	End of nozzle	N ₂ +Ar	100	
		H ₂ O	5	
		02	5	
	Downstream of the purifier	СО	0,2	
With on-site supply of hydrogen produced		TS ¹⁾	0,004	
from hydrocarbons utilizing steam reform-		THC as C1	2	
ing, catalytic reforming, partial oxidation, or ATR and purification using refining	End of nozzle	СО	0,2	
equipment		N ₂ +Ar	100	
		H ₂ 0	5	
		02	5	
	Downstream of the	H ₂ 0	5	
	purifier	02	5	
With on-site supply from hydroelectrolysis		Halogens	0,05	
and purification using refining equipment	End of nozzle	N ₂ +Ar	100	
		H ₂ 0	5	
		02	5	

Table C.5 (continued)

Annex D (informative)

Typical hydrogen fuelling station supply chain

D.1 General

This annex describes the potential impurities in each step of the supply chain. An example of a typical fuelling station supply chain is given in <u>Figure D.1</u>.

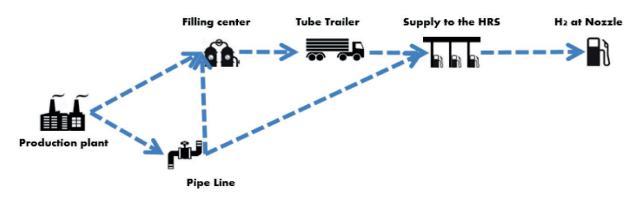


Figure D.1 — Example of a typical fuelling station supply chain

D.2 Production

D.2.1 General

The contaminants that may be introduced at production depend on the production technology and on the barriers and control implemented. Only gaseous impurities are considered in each production method subclause below. Particulates are considered separately in <u>D.4</u>. For <u>Tables D.1</u> to <u>D.6</u>, the following definitions are used for the "possibility of impurity over threshold":

- Possible: The impurities have been observed during non-routine operation or fault conditions.
- Improbable: The impurities have not been observed during non-routine operation nor fault conditions.

D.2.2 Reforming

Reforming is the most common H_2 production method today. It uses various types of feedstocks, such as, natural gas, biogas, naphtha, methanol, and NH_3 (see <u>Table D.1</u>). The feedstock is usually converted into a synthetic gas (Syngas), and shift reacted to produce more H_2 and CO_2 , then purified. The most common purification way is by pressure swing adsorption (PSA).

The contaminants potentially present in the hydrogen are dependent on the process technology and on the purification. It should be investigated on a case by case basis for each production source.

<u>Annex B</u> on centralized steam methane reforming (SMR) of natural gas with PSA purification gives an example on how to investigate the potential contaminants related to a very widely-used H_2 production route. Table D 1 is the result:

Possibility of impurity over threshold	Gaseous impurities
Possible	N ₂ , CH ₄ , CO, He
Improbable	Ar, O ₂ , CO ₂ , H ₂ O, TS, NH ₃ , THC (except methane), HCOOH, Halogens, HCHO

Table D.1 —	Impurities	potentially	present in H ₂	produced by SMR
-------------	------------	-------------	---------------------------	-----------------

D.2.3 Alkaline electrolysis

Alkaline electrolysis has been used for more than a century to produce H_2 from H_2O using electricity. The hydrogen produced at the anode is usually purified from the remaining O_2 through a catalytic reactor and then dried through a temperature swing adsorption (TSA). <u>Table D.2</u> investigates the potential sources of contaminations. Such contaminants are mainly coming from the H_2O and the air.

Table D.2 — Impurities potentially present in H₂ produced by alkaline electrolysis

Possibility of impurity over threshold	Gaseous impurities
Possible	0 ₂ , H ₂ 0
Improbable	CO ₂ , CO, CH ₄ , He, N ₂ , Ar, TS, NH ₃ , THC, HCHO, HCOOH, Halogens

NOTE As per the rationale in ISO 14687-2 (see B.2), the presence of water soluble contaminants such as K+ and Na+, which could be present as an aerosol, can be controlled by process control of the level of water contamination precluding the presence of water in liquid form.

D.2.4 Proton exchange membrane electrolysis

PEM electrolysis is the electrolysis of H_2O in a cell equipped with a solid polymer electrolyte that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. Table D.3 investigates the potential sources of contaminants. Such contaminations are mainly coming from the H_2O and the air.

Table D.3 — Impurities potentially present in H₂ produced by PEM electrolysis

Possibility of impurity over threshold	Gaseous impurities
Possible	0 ₂ , H ₂ 0,
Improbable	CO_2 , CO , CH_4 , Ar , TS , N_2 , NH_3 , THC , $HCHO$, $HCOOH$, $Halogens$

D.2.5 By-products

Hydrogen may be obtained through purification of H_2 rich effluent by-product of chemical/ petrochemical industry. Given the large variety of potential feeds to be purified and processes involved, a specific dedicated analysis should be carried out for each source to identify the potential contaminants and associated probabilities.

D.2.6 New production methods

There are a number of new production methods under investigation such as photoelectrolysis, algae, bacterial, etc. Each of them should be the object of a dedicated evaluation if the produced H_2 is used for the supply of a fuelling station.

D.3 Transportation

D.3.1 General

This clause relates to additional contaminants that may be introduced in the H₂ during transportation.

D.3.2 Pipeline

When transported in pipelines, H₂ is usually at relatively high pressure (>40 bar). Contamination can be due to intentional and unintentional causes (see <u>Table D.4</u>). An example of an intentional cause would be the "odorization" of the fuel. An example of an unintentional cause would be condensate.

During maintenance, the potential sources of contamination are:

- N₂ if insufficiently purged after maintenance;
- H₂O if insufficiently dried after maintenance.

Normal criteria for N₂ purging after maintenance is O₂ below 2 %. This is what is required for safety reasons before allowing to fill the system with H₂. If H₂ purging is done to reach 100 µmol/mol N₂ before putting into operation, the O₂ levels will be less than 2 µmol/mol. If improper purging occurs, and the O₂ levels exceed 5 µmol/mol, then the N₂ levels will be greater than 250 µmol/mol. This implies that the probabilities to exceed threshold due to poor purging are in the same order of magnitude for both O₂ and N₂.

Possibility of Impurity over threshold	Gaseous Impurities
Possible	N ₂ ,O ₂
Improbable	CO ₂ , CO, CH ₄ , He, H ₂ O, TS, NH ₃ , THC, HCHO, HCOOH, Halogens

D.3.3 Filling center and tube trailer

Filling center may be attached to a production site or to a pipeline network. They are used to fill gaseous pressurized tube trailers (see <u>Table D.5</u>). Contamination during normal operation is "Improbable".

During maintenance, the potential sources of contamination are:

- 0₂ or N₂ if insufficiently purged after maintenance;
- H₂0 if insufficiently dried after maintenance;
- if cutting oils are used during the process, contamination from sulphur, hydrocarbons, or halogenates is possible.

Normal criteria for N_2 purging after maintenance is O_2 below 2 %. This is what is required for safety reasons before allowing the system to fill with H_2 .

Starting with a system containing N₂ with less than 2 % O₂, if H₂ purging is done to reach 100 µmol/mol N₂ before putting into operation, the O₂ levels will be less than 2 µmol/mol. If improper purging occurs, and the O₂ levels exceed 5 µmol/mol, then the N₂ levels will be greater than 250 µmol/mol. This implies that the probabilities to exceed the threshold due to poor purging are in the same order of magnitude for both O₂ and N₂.

Tube trailers may be filled at different sources. The risk of contamination due to the residual H_2 contained in a tube trailer coming from a different location is relevant at the considered fuelling station. This should be taken into account if necessary in the risk analysis.

Table D.5 — Impurities potentially introduced during centralized distribution and tube trailertransportation

Possibility of impurity over threshold	Gaseous impurities
Possible	N ₂ , O ₂
Improbable	$\rm CO_2, \rm CO, \rm CH_4, \rm He, \rm H_2O, \rm TS, \rm NH_3, \rm THC, \rm HCHO, \rm HCOOH, \rm Halogens$

D.4 Hydrogen fuelling station

Contamination during normal operation should be assessed with consideration of the technology used on a case by case basis (see <u>Table D.6</u>). During maintenance, the potential sources of contamination are:

- N₂, O₂, He (if used) if insufficiently purged after maintenance of fuelling station;
- H₂O if insufficiently dried after maintenance of the fuelling station or after shutdown of the precooling system where water can form ice upon restart;
- if oils or lubricants are used during the process, contamination from sulphur, hydrocarbons, or halogenates is possible.

Table D.6 — Impurities potentially introduced at fuelling station

Possibility of impurity over threshold	Gaseous impurities
Possible	N ₂ , O ₂ , He, THC, H ₂ O,
Improbable	TS, Halogens

D.5 Particulates

Particulates may enter the hydrogen at each level of the supply chain. By default, they should be considered as "possible" for each of them, except if specific design measures (filtering) permit to demonstrate the opposite. Particulates can include solid or liquid materials and can occur due to improper cleaning (metal burrs, cleaning fluid, etc.), abrasion, condensation, etc., especially in the fuelling station. Use of cutting oils during the process could lead to contamination particulates (construction debris if insufficiently cleaned after maintenance). The filter requirements are specified in ISO 19880-1.

Annex E

(informative)

Routine hydrogen quality analysis

E.1 Off-site production

The risk to have contaminants over the threshold depends on the production technology. Usually, contaminants which are critical for a given process are monitored on line either directly (analysers) or indirectly through the monitoring of process parameters which are directly related to the contaminant considered.

For each contaminant, the routine quality control should be defined depending on the process considered, the existing online monitoring, and the actual risk of contamination.

E.2 Transportation

E.2.1 Storage and transportation of compressed hydrogen

When hydrogen produced at a centralized production site is transported by compressing and filling it into transport cylinders, there is minimal risk that its components are altered by chemical reactions. However, one cannot rule out the possibility of contamination by residual or condensed contaminants that are present in the cylinders in the first place. This could occur with (for example) new cylinders or following an inspection. The quality assurance plan will take this into account and ensure the quality of delivered compressed gas hydrogen for all feedstocks by (for example) a routine analysis.

E.2.2 Storage and transportation of liquid hydrogen

When hydrogen is produced in a liquid state, any contaminant present in the gas before liquefaction will be trapped as solid deposit in the liquefaction process and not appear in the product gas (except He).

E.2.3 Pipeline transport

When hydrogen is transported via pipelines from a production facility, it is clear that, in general, there is no risk of contamination as demonstrated by the example of city gas transport. Therefore, in principle, no additional routine analyses are required within the pipelines.

E.3 Hydrogen fuelling station

E.3.1 Delivered hydrogen

Quality control for delivered hydrogen will be carried out following a quality assurance plan developed specifically for the supply chain of the hydrogen.

For individual contaminant species that may enter after delivery to the fuelling station, the frequency of analysis may be reduced, provided that the possibility of infiltration is deemed eliminated by having a good operation and control program at the fuelling station, such as a purge procedure.

While sampling is to be, as a rule, made at the end of a nozzle, it may be conducted upstream of the fuelling nozzle to the extent that no changes occur to the quality of hydrogen. (See 6.1).

E.3.2 On-site hydrogen generation

On-site generation should require on-site quality control, whether by monitoring of specific analytes that can act as an indicator species for those contaminants considered to have potential to be present based on the type of on-site generation, or by other process control methodologies.

An example could be the monitoring of the differential pressure across an electrolyser membrane, or of the temperature of the hydrogen following a de-oxo catalyst system where this can be demonstrated to be adequate process control for the oxygen concentration within the hydrogen. If it is confirmed that the concentration of the indicator species of a given production method is less than its specified limit, other impurities are deemed to have met the standard requirements. For example, in the case of SMR and PSA production and purification, CO could serve as the indicator species.

E.3.3 Hydrogen fuelling station contaminants

Contaminants may be introduced at the fuelling station during installation, operation, and maintenance. The hydrogen quality control plan should include steps to mitigate these potential contaminants. The analysis immediately following installation or maintenance may be different than the analysis for routine operations. Both should be based upon the hydrogen quality control plan. A routine analysis of the potential contaminants generated by the fuelling station shall be performed, but may be reduced based upon the hydrogen quality control plan.

Bibliography

- [1] ISO 14687-2, Hydrogen fuel Product specification Part 2: Proton exchange membrane (PEM) fuel cell applications for road vehicles
- [2] ISO 21087, Gas analysis Analytical methods for hydrogen fuel Proton exchange membrane (PEM) fuel cell applications for road vehicles
- [3] Society of Automotive Engineers J2719 2011, Hydrogen Fuel Quality for Fuel Cell Vehicles
- [4] CHENG XUAN et al., A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms and mitigation. *Journal of Power Sources.* **165** (2007) 739–756
- [5] PEM FUEL CELL DURABILITY HANDBOOK. Edited by X. Yuan, H. Wang, and H. Li. CRC Press. August 2011
- [6] YUAN XIAO-ZI et al. Diagnosis of contamination introduced by ammonia at the cathode in a polymer electrolyte membrane fuel cell. *International Journal of Hydrogen Energy*. September 2012, **37**(17), 12464-12473
- [7] WANG XIAOFENG et al. An experimental overview of effects of hydrogen impurities on polymer electrolyte membrane fuel cell performance. *International Journal of Hydrogen Energy.* 20 November 2014, **39** (34), 19701-19713
- [8] WATANABE S., AKAI, M., TATSUMI M., Quality standard for hydrogen fuel of fuel cell vehicles. *Fuel Cell Seminar Abstracts*. 2004, Fuel Cell Seminar Abstracts. 2004
- [9] QI JING et al., Effect of cationic contaminants on polymer electrolyte fuel cell performance. *Journal of Power Sources*. 15 July 2015, **286**, 18-24
- [10] MOLTER. TERRY. Final Report Effects of Impurities on Fuel Cell Performance and Durability. *DOE hydrogen and fuel cells program FY 2011 Annual Progress report.* 2011, 644-648
- [11] UDDIN MD AMAN et al., Effect of Chloride on PEFCs in Presence of Various Cations. *Journal of the Electrochemical Society.* 2015, **162**, 373-379
- [12] SATOSHI et al. A decline of PEMFC Performance with fuel containing impurities. *Proceedings of the 31th FISITA world automotive congress*. F2006SC41, 1-8
- [13] JACQUES P.-A., IHONEN J, KOSKI P. HyCoRA Hydrogen Contaminant Risk Assessment Grant agreement no: 621223: *Review on the impact of impurities on PEMFC and analytical methods for hydrogen QA*. 2014
- [14] SMOLINKA T. et al., CO_2 reduction on Pt electrocatalysts and its impact on H_2 oxidation in CO_2 containing fuel cell feed gas A combined in situ infrared spectroscopy, mass spectrometry and fuel cell performance study. Electrochimica Acta. 2005 **50**(25-26), 5189-5199
- [15] SCHÖN H, Handbuch der Reinsten Gase. Springer-Verlag Berlin Heidelberg. 2005

ISO 19880-8:2019(E)

Price based on 39 pages

INTERNATIONAL STANDARD

ISO 19880-8

First edition 2019-10 **AMENDMENT 1** 2021-08

Gaseous hydrogen — Fuelling stations —

Part 8: Fuel quality control

AMENDMENT 1: Alignment with Grade D of ISO 14687

Hydrogène gazeux — Stations de remplissage — Partie 8: Contrôle qualité du carburant AMENDEMENT 1: Alignement avec le Grade D de l'ISO 14687

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee TC 197, Hydrogen technologies.

A list of all parts in the ISO 19880 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Gaseous hydrogen — Fuelling stations —

Part 8: Fuel quality control

AMENDMENT 1: Alignment with Grade D of ISO 14687

Clause 5, first paragraph

Replace the paragraph with the following:

The quality requirements of hydrogen fuel dispensed to PEM fuel cells for road vehicles are listed in Grade D of ISO 14687.

8.4, first paragraph

Replace the paragraph with the following:

It is necessary to evaluate the possible consequences on a fuel cell vehicle if any impurity exceeds the threshold value of ISO 14687 Grade D.

8.4, second paragraph

Replace the paragraph with the following:

An estimation of the concentration above the ISO 14687 Grade D threshold values at which the severity increases (if applicable) is named "Level 1" and is given in column 5 for each impurity where the "severity class" is not already 4.

Table 4

Replace Table 4 with the following table:

Impurity		ISO 14687 Grade D threshold value ^a	Severity class (from ISO 14687 Grade D threshold value to Level 1)	Level 1 value	Severity class (greater than Level 1 threshold)
		[µmol/mol]		[µmol/mol]	
Total non-H ₂ gases		300	UD ^b	UD ^b	4
Helium	Не	300	UD ^b	UD ^b	4
Nitrogen	N ₂	300	UD ^b	UD ^b	4
Argon	Ar	300	UD ^b	UD ^b	4
Oxygen	02	5	UD c	UD c	4
Carbon dioxide	C0 ₂	2	1	3	4
Carbon monoxide	CO	0,2	2-3 ^d	1	4
Methane	CH ₄	100	1	300	4
Water	H ₂ 0	5	4	N/A	4
Total sulphur compounds	H ₂ S basis	0,004	4	N/A	4
Ammonia	NH ₃	0,1	4	N/A	4
Total hydrocarbons except methane	CH ₄ basis	2	1-4 ^d	N/A	4
Formaldehyde	НСНО	0,2	2-3 ^d	1	4
Formic acid	НСООН	0,2	2-3 ^d	1	4
Halogens		0,05	4	N/A	4
Maximum particulate concentration (liquid and solid) ^e		1 mg/kg	4	N/A	4

Table 4 — Impact of impurities on fuel cell powertrain

Key

UD: undetermined

N/A: not applicable

^a The threshold value is according to hydrogen specification of Grade D of ISO 14687.

^b The severity class (from ISO 14687 Grade D threshold value to Level 1) and Level 1 value for this impurity is undetermined because no specific study has been conducted yet in alignment with the new threshold value. It needs to be covered in the next edition of this document.

^c The severity class (from ISO 14687 Grade D threshold value to Level 1) and Level 1 value for oxygen are undetermined because data are lacking to confirm those values. It needs to be covered in the next edition of this document.

^d A higher value is to be considered for risk assessment approach until more specific data is available.

e Particulates are based upon mass density mg/kg.

A.15 first paragraph

Replace "ISO 14687-2" with "Grade D of ISO 14687" in the second last sentence.

Table B.1

Replace Table B.1 with the following table:

				:
Impurity	Impurity Threshold	Possible causes For the source studied	Typical barriers employed in this process	Probabil- ity with barriers
	µmol/mol			
Inertgas	000	Present in natural gas and syn-	– PSA	IIDa
N_2	nnc	gas PSA malfunction	 Double analysis PSA outlet <100 μmol/mol 	200
Inert gas Ar	300	0nly ATR and POx present in O ₂ typical 0,6 % in syngas from ATR	 PSA. Not sized to remove Ar. Ar content may be higher if H₂ comes from ATR, POX or feeds with high Ar content 	UDa
02	ъ	Not present in syngas. O_2 is unstable in the condition of reforming and shift reactions. Combines with H_2 , CO, and CH_4	- PSA cannot be used with significant 0_2 content for safety reasons	0
CO_2	2	Present in syngas (%)	 PSA adsorption strength of MS, activated carbon, silicagel higher for CO₂ than CO. A CO content lower than 10μmol/mol insures a CO₂ content lower than 2 μmol/mol 	0
CO	0,2	Normal operation below thresh- old. Occasional peaks at µmol/ mol level	 Double analysis at the PSA outlet + trip if the CO>1-10 μmol/mol at PSA outlet 	4
CH_4	100	Present in syngas at % level	— In most cases C0 is sizing the PSA, therefore CO<10 μ mol/mol ==> CH ₄ < 100 μ mol/mol depending on users' specification (Europe pipeline 2 μ mol/mol).	2
H_2O	5	Syngas saturated in ${ m H_20}$	$-$ PSA adsorbed in alumina and MS adsorption strength higher than CO_2. A CO content lower than 10 μ mol/mol insures a H_2O content lower than 5 μ mol/mol.	0
Key				
UD: undetermined	mined.			
^a The pro	bability of oc	currence for this impurity is undeterm	The probability of occurrence for this impurity is undetermined because no specific study has been conducted yet.	

Table B.1 — Probability of occurrence for off-site SMR

Impurity	Impurity Threshold	Possible causes For the source studied	Pr Typical barriers employed in this process	Probabil- ity with harriers
	μmol/mol			
			 Desulphuration upstream reformer (typical values: normal < 10 ppb, maximum < 20 ppb, guarantee < 50 ppb) 	
			- Typical dilution factor 2,5 (1 mole natural gas produces 2,5 mole H_2)	
			— Pre-reformer catalyst poisoning by sulphur is irreversible. Sulphur trapped at this stage. In case of break through, process condition cannot be achieved	
TS	0,004	TS from natural gas	 Reformer catalyst poisoning by sulphur is irreversible. Sulphur trapped at this stage. In case of breakthrough, process condition cannot be achieved 	0
			 Shift catalyst poisoning by sulphur is irreversible. Sulphur trapped at this stage. In case of breakthrough, process condition cannot be achieved 	
			— PSA adsorption of H_2S before CO, CO ₂ , species	
			- H ₂ S adsorption in pipe and vessels. Strong affinity with steel	
NH ₃	0,1	Traces present in syngas	 PSA adsorption strength of alumina and molecular sieve higher than CO. A CO content lower than 10μmol/mol insures a NH₃ content lower than 0,1 μmol/mol 	0
THC	2	Traces of C2+ after reforming reaction	$-$ PSA C2 C3, C4, C5+adsorbed by activated carbon layer. A C0 content lower than 10 μ mol/mol insures a THC (C H_4 excluded) content lower than 2 μ mol/mol	0
НСНО	0,2	May be present in syngas. essentially liquid	- PSA. Formaldehyde adsorption strength of alumina and molecular sieve higher than C0.A C0 content lower than 10 µmol/mol insures a HCHO content lower than 0,1 µmol/mol. To guarantee 0,01 µmol/mol would require more experience of measuring at those levels	UD a
НООЭН	0,2	May be present in syngas essentially liquid	 PSA. Formic adsorption strength of alumina and molecular sieve higher than CO. A CO content lower than 10 μmol/mol insures a HCOOH content lower than 0,2 μmol/mol 	0
Key UD: undetermined	rmined			
^a The pro	obability of oc	currence for this impurity is undetern	The probability of occurrence for this impurity is undetermined because no specific study has been conducted yet.	

Impurity	Impurity Threshold	Possible causes For the source studied	P Typical barriers employed in this process	Probabil- ity with barriers
	μmol/mol			
			— Any Cl present in natural gas would be stopped by HDS	
			 Pre-reformer catalyst poisoning by Cl irreversible Cl trapped at this stage. If breakthrough, process condition cannot be achieved 	
Halogens	0,05	Present in natural gas	 Reformer catalyst poisoning by Clirreversible. Cl trapped at this stage l break through, process condition cannot be achieved 	0
			 Shift catalyst poisoning by Cl irreversible. Cl trapped at this stage. I break through, process condition cannot be achieved 	
			 PSA adsorption of Cl before CO, CO₂, species 	
Не	300	Not present in natural gas in N Europe (<10 µmol/mol). Passes through the whole process. Dilu- tion factor 2,5		0
Key				
UD: undetermined	rmined			
a The pro	obability of oc	currence for this impurity is undeterm	The probability of occurrence for this impurity is undetermined because no specific study has been conducted yet.	

Table B.1 (continued)

The probability of occurrence for this impurity is undetermined because no specific study has been conducted yet.

ISO 19880-8:2019/Amd.1:2021(E)

Table B.2

Replace Table B.2 with the following table:

Impurity	Threshold	Causes possible For the item studied	Typical barriers employed in this process	Probability with barriers
	µmol/mol			
Inert gas N ₂	300	Air intake if some areas are at negative pressure From seal gas or purge gas Wrong purging after maintenance	Inlet pressure PSL trip on compressors	UD a
Inert gas Ar	300	No potential	1 % Ar in the air. 100 μmol/mol would mean 1 % air in the pipe Never been observed	UD a
02	5	Air intake if some areas are at negative pressure	Inlet pressure PSL trip on compressors	1
CO ₂	2	From Air: CO_2 at 400 μ mol/mol in the air	$2 \mu mol/mol of C O_2 would mean 0,5 \% air in the pipe Never been observed$	0
CO	0,2	No potential		0
CH ₄	100	No potential		0
H ₂ O	5	Wrong drying after pressure hydraulic test	$H_2 > 40$ bar ==> leak from H_2O to H_2 unlikely during operation.	0
TS	0,004	No potential		0
NH ₃	0,1	No potential		0
THC	2	No potential		0
НСНО	0,2	No potential		UD a
НСООН	0,2	No potential		0
Halogens	0,05	From cleaning material after maintenance		1
Не	300	No potential		0

Table B.2 — Probability of occurrence for pipeline

Key

UD: undetermined

^a The probability of occurrence for this impurity is undetermined because no specific study has been conducted yet. It needs to be covered in the next edition of this document.

Table B.3

Replace Table B.3 with the following table:

Impurity	Threshold	Causes possible For the source studied	Existing barriers	Probability
	µmol/mol			
Inert gas N ₂	300	N ₂ purging operation, air intake during normal operation or maintenance		UD a
Inert gas Ar	300	Air intake during normal operation or maintenance	1 % Ar in the air. 100 μmol/mol would mean 1 % air in the fuelling station Never been observed	UD ^a
02	5	Air intake during normal operation or maintenance		2
CO ₂	2	Air intake during normal operation or maintenance	$2 \mu mol/mol CO_2 would mean 0,5 % air in the fuelling station. Never been observed$	0
CO	0,2	No potential at fuelling station level		0
CH4	100	No potential at fuelling station level		0
H ₂ 0	5	Maintenance, leaks from compressor ex- changers, improper pressure vessel drying after periodic inspection, H ₂ O coming from the vent in case of check valve malfunction, depending on fuelling station/compressor technology		2
TS	0,004	Materials gaskets, valve seats and tubing	Material specifications	1
NH ₃	0,1	No potential		0
THC	2	Oil carryover from compressor (depending on compressor technology)		2
НСНО	0,2	No potential		UD a
НСООН	0,2	No potential		0
Halogens	0,05	From degreasing material		1
Не	300	No potential at fuelling station level	If pure He is not used for maintenance	0

Table B.3 — Probability of occurrence for fuelling station to be source of impurities

Кеу

UD: undetermined

^a The probability of occurrence for this impurity is undetermined because no specific study has been conducted yet. It will be covered in the next edition of this document.

Table B.4

Replace Table B.4 with the following table:

ble B.4 — Combined risk	assessment
ole B.4 — Combined	is
ole B.4 — Com	oinec
ole	om
ole	
ole	4 .8
Ta	able

ISO spec	ISO specification	Supply	Supply chain probability	lity						Residual	al	
Impurity	Threshold	Production SMR	Pipeline distribution	Fuelling station	Compounded probability	Severity	Severity Criticality	Additional risk reduction measures	Severity reduction measures	Prob- abili- ty	Se- veri- ty	Criti- cality
	μmol/mol											
Inert gas N ₂	300	UD a	UD a	UD a	UD a	UD a	UD a	Systematic N ₂ analysis after shutdown before resuming operation or specific purging procedure	None	UD a	UD a	UD a
Inert gas Ar	300	UD a	UD a	UD a	UD a	UD a	UD ^a		None	UD a	UD a	UD ^a
0_2	ъ	0	H	2	2	UD ^b	uD ^b		None	2	UD ^b	UD ^b
CO_2	2	0	0	0	0	1	+		None	0		+
CO	0,2	4	0	0	4	2	*	CO absorber at fuelling station design margin 100% + operation procedure for replacement when H ₂ quantity purified = 50\% of design capacity.	None	1	2	+
CH_4	100	2	0	0	2	1	+		None	2	Ļ	+
H ₂ 0	ъ	0	0	-	1	4	*	Check H ₂ O at commissioning and after maintenance involving opening of vessels or piping. Measurement shall be done at appropriate location downstream of the considered vessel or piping	None	0	4	+
TS	0,004	0	0	1	1	4	*	Check TS at commissioning and after maintenance involving parts modifica- tion (piping, valves, seals, gaskets). Not required for part replaced by identi- cal component	None	0	4	+
NH_3	0,1	0	0	0	0	4	+		None	0	4	+
Key UD: undetermined	mined											
^a The pro document.	bability of oc	currence, the se	The probability of occurrence, the severity and the criticality for this imment.	ticality for 1	this impurity are	undetermine	ed because no	purity are undetermined because no specific study has been conducted yet. It needs to be covered in the next edition of this	to be covered i.	n the ne	xt editio	n of this
b The sev	rerity and the	criticality for ox	The severity and the criticality for oxygen are undetermined because data are lacking to confirm those values.	rmined bec:	ause data are lack	ting to confir	m those value.	S.				

ISO spec	ISO specification	Supply	Supply chain probability	lity						R	Residual		
Impurity	Impurity Threshold	Production SMR	Pipeline Fuelling distribution station	1	Compounded probability	Severity	Severity Criticality	Additional risk reduction measures	Seve redu meas	Severity P reduction a measures	Prob- abili- ty	Se- veri- ty	Criti- cality
	μmol/mol												
THC	2	0	0	2	2	4	+	Oil/grease cleaning at commissioning and after maintenance. Compressor surveillance depending on compres- sor technology (coalescing filter) THC analysis or commissioning and after maintenance	b0 ()	None	0	4	+
НСНО	0,2	UD a	UDa	UD a	UD a	UD a	UDa		NC	None I	UD a	UD a	UD a
НОООН	0,2	0	0	0	0	2	+		NC	None	0	2	+
Halogens	0,05	0	0	, , ,	1	4	*	Halogenated analysis at commission- ing (species shall be defined) or after maintenance		None	0	4	+
Не	300	0	0	0	0	4	+		NC	None	0	4	+
					+			0		*			
	Key	y	Acce	ptable risl	Acceptable risk area: existing controls sufficient	controls	Further in barriers o	Further investigation is needed: existing barriers or control may not be enough	Unacceptable risk; additional control or barriers required	ole risk; additiona barriers required	ditiona	l contro l	ol or
Key UD: undetermined ^a The probabilit document.	mined bability of occ	currence, the sev	verity and the cri	ticality for t	his impurity are u	ındeterminec	d because no s	undetermined The probability of occurrence, the severity and the criticality for this impurity are undetermined because no specific study has been conducted yet. It needs to be covered in the next edition of this ment.	needs to be co	overed in	the next	c edition	of this

Table B.4 (continued)

The severity and the criticality for oxygen are undetermined because data are lacking to confirm those values.

p

ISO 19880-8:2019/Amd.1:2021(E)

Table B.5

Replace Table B.5 with the following table:

Impurity	Threshold	Possible causes For the source studied	Typical barriers employed in this process	Probability
	µmol/mol			
Inert gas N ₂	300	Insufficient purging after shutdown	Electrolyser process control	UD a
Inert gas Ar	300	Insufficient purging after shutdown	If N ₂ below 1 %, Ar < 100 μmol/mol	UD a
02	5	Insufficient purging after shutdown (does not apply to all systems) O_2 permeation through the membrane	Process control Deoxo O ₂ sensor	2
CO ₂	2			0
СО	0,2			0
CH ₄	100			0
H ₂ 0	5	H_2 from electrolyser is saturated.	Dryer plus water sensor downstream of electrolyser	2
TS	0,004			0
NH ₃	0,1			0
THC (excluding CH ₄)	2			0
нсно	0,2			UD a
нсоон	0,2			0
Halogens	0,05	Cl from water?	Any trace of halogenat- ed compounds would be trapped in the dryer which has a stronger adsorption capacity for Cl than for H ₂ O	0
Не	300		_	0

Table B.5 — Probability of occurrence for alkaline electrolysis

Кеу

UD: undetermined

^a The probability of occurrence for this impurity is undetermined because no specific study has been conducted yet in alignment with the new threshold value. It needs to be covered in the next edition of this document.

C.2 first paragraph

Replace "ISO 14687-2" with "Grade D of ISO 14687".

C.10 first paragraph

Replace "ISO 14687-2" with "Grade D of ISO 14687".

Table C.4

Replace Table C.4 with the following table:

Category: Distribution				
Facility type	Sampling/ Monitoring point	Contaminant	Threshold	Reduced frequency
			(µmol/mol)	
		TSa	0,004	Annual ^b
	Downstream of the purifier	THC as C1	2	Annual ^b
Production of hydrogen from hydrocar- bons utilizing steam reforming, catalytic		СО	0,2	Annual ^b
reforming, partial oxidation, or ATR,		N ₂	300	Annual ^{b, c}
ourification using refining equipment, and distribution	or the purmer	Ar	300	Annual ^{b, c}
albenbation		H ₂ O	5	Annual ^b
		02	5	Annual ^{b, c}
		Halogens	0,05	Annual ^b
Electrolysis of NaCl for hydrogen, purification, and distribution	Downstream of the purifier	N ₂	300	Annual ^b
	or the purmer	Ar	300	Annual ^b
		H ₂ O	5	Annual ^b
		02	5	Annual ^b
		TS	0,004	Annual ^b
		THC as C1	2	Annual ^b
		СО	0,2	Annual ^b
		Halogens	0,05	Annual ^b
Purification of coke-oven gas, and distri-	Downstream	N ₂	300	Annual ^b
bution	of the purifier	Ar	300	Annual ^b
		H ₂ O	5	Annual ^b
		02	5	Annual ^b
		NH ₃	0,1	Annual ^b
		НСНО	0,2	Annual ^b
		НСООН	0,2	Annual ^b
		TS	0,004	Annual ^b
	Downstream of the purifier	THC as C1	2	Annual ^b
Purification of by-product hydrogen from		СО	0,2	Annual ^b
ethylene plants, and distribution		N ₂	300	Annual ^b
		Ar	300	Annual ^b
		H ₂ O	5	Annual ^b
		02	5	Annual ^b

Table C.4 —	Routine	analysis w	ork
-------------	----------------	------------	-----

^a Since sulfur in steam reforming is mostly found as hydrogen sulfide (H_2S), H_2S analysis may be performed in lieu of total sulfur analysis.

^b The minimum frequency of the analysis is premised on the combination of continuous analysis of the indicator species (CO for hydrocarbon cracking and O_2/H_2O for water electrolysis) and proper operation controls to make sure no mixing of impurities will occur. If that premise is not satisfied, the analysis shall be carried out once a day.

^c If a container or piping maintenance has not been opened to air or purged since the last hydrogen analysis, it is not necessary for analysis

^d If the 5 ppm (dew point of -66 °C or less) are satisfied by routine management, there is no need for analysis.

e If the hydrogen on a pipeline contains odorant, the odorant shall be analysed with minimum frequency of once a year.

The batch analysis once a year is needed even if a continuous analysis is performed.

Category: Fuelling station				
Facility type	Sampling/ Monitoring point	Contaminant	Threshold	Reduced frequency
			(µmol/mol)	
	End of nozzle	Those not analysed by the distributor		Annual ^b
With off-site supply of transported com-		N ₂	300	Annual ^{b, c}
pressed or liquid hydrogen		Ar	300	Annual ^{b, c}
		H ₂ 0	5	Annual ^{b, d}
		02	5	Annual ^{b, c}
	Downstream of the deodorant equip- ment	(Those listed for the odorant)		Annual ^{b, e}
With off-site supply from hydrogen pipe-		Those not analysed by the distributor		Annual ^b
lines	End of nozzle	N ₂	300	Annual ^{b, c}
		Ar	300	Annual ^{b, c}
		H ₂ 0	5	Annual ^{b, d}
		02	5	Annual ^{b, c}
	Downstream of the purifier	СО	0,2	Continuous and Annual ^{b, f}
	End of nozzle	TSa	0,004	Annual ^b
With on-site supply of hydrogen produced		THC as C1	2	Annual ^b
With on-site supply of hydrogen produced from hydrocarbons utilizing steam reforming, catalytic reforming, partial oxidation, or ATR and purification using refining equipment		CO	0,2	Annual ^b
		N ₂	300	Annual ^{b, c}
renning equipment		Ar	300	Annual ^{b, c}
		H ₂ 0	5	Annual ^{b, d}
		02	5	Annual ^{b, c}
		N ₂	300	Annual ^{b, c}
With on-site supply from hydroelec- trolysis and purification using refining	Downstream of the purifier	Ar	300	Annual ^{b, c}
		H ₂ O	5	Continuous and Annual ^{b, f}
		02	5	Continuous and Annual ^{b, f}
equipment	End of nozzle	Halogens	0,05	Annual ^b
		N ₂	300	Annual ^b
		Ar	300	Annual ^{b, c}
		H ₂ 0	5	Annual ^b
		02	5	Annual ^b

Table C.4 (continued)

^a Since sulfur in steam reforming is mostly found as hydrogen sulfide (H_2S), H_2S analysis may be performed in lieu of total sulfur analysis.

^b The minimum frequency of the analysis is premised on the combination of continuous analysis of the indicator species (CO for hydrocarbon cracking and $0_2/H_2O$ for water electrolysis) and proper operation controls to make sure no mixing of impurities will occur. If that premise is not satisfied, the analysis shall be carried out once a day.

^c If a container or piping maintenance has not been opened to air or purged since the last hydrogen analysis, it is not necessary for analysis

^d If the 5 ppm (dew point of -66 °C or less) are satisfied by routine management, there is no need for analysis.

e If the hydrogen on a pipeline contains odorant, the odorant shall be analysed with minimum frequency of once a year.

f The batch analysis once a year is needed even if a continuous analysis is performed.

Table C.5

Replace Table C.5 with the following table:

Facility type	Sampling/ Monitoring point	Contaminant	Standard value	
			(µmol/mol)	
		TS ^a	0,004	
	Downstream of the purifier	THC as C1	2	
Production of hydrogen from hydrocarbons		CO	0,2	
atilizing steam reforming, catalytic reforming, pr partial oxidation or ATR, followed by refine-		N ₂	300	
ment	of the parmer	Ar	300	
		H ₂ 0	5	
		$\begin{array}{c} \mathrm{THC} \mathrm{as}\mathrm{C1}\\ \mathrm{CO}\\ \mathrm{N}_2\\ \mathrm{Ar}\\ \mathrm{H}_2\mathrm{O}\\ \mathrm{O}_2\\ \mathrm{Halogens}\\ \mathrm{N}_2\\ \mathrm{Ar}\\ \mathrm{H}_2\mathrm{O}\\ \mathrm{O}_2\\ \mathrm{CO}\\ \mathrm{CO}\\ \mathrm{CO}\\ \mathrm{Halogens}\\ \mathrm{N}_2\\ \mathrm{CO}\\ \mathrm{Halogens}\\ \mathrm{N}_2\\ \mathrm{Ar}\\ \mathrm{H}_2\mathrm{O}\\ \mathrm{O}_2\\ \mathrm{CO}\\ \mathrm{Halogens}\\ \mathrm{N}_2\\ \mathrm{Ar}\\ \mathrm{H}_2\mathrm{O}\\ \mathrm{O}_2\\ \mathrm{NH}_3\\ \mathrm{HCHO}\\ \mathrm{HCOOH}\\ \mathrm{TS}\\ \mathrm{TS}\\ \mathrm{THC} \mathrm{as} \mathrm{C1}\\ \mathrm{CO}\\ \mathrm{HCOOH}\\ \mathrm{TS}\\ \mathrm{THC} \mathrm{as} \mathrm{C1}\\ \mathrm{CO}\\ \mathrm{N}_2\\ \mathrm{Ar}\\ \mathrm{CO}\\ \mathrm{CO}\\ \mathrm{N}_2\\ \mathrm{Ar}\\ \mathrm{CO}\\ \mathrm{CO}\\ \mathrm{N}_2\\ \mathrm{Ar}\\ \mathrm{CO}\\ \mathrm{CO}\\ \mathrm{N}_2\\ \mathrm{CO}\\ \mathrm{CO}\\ \mathrm{N}_2\\ \mathrm{Ar}\\ \mathrm{CO}\\ \mathrm{CO}\\$	5	
		Halogens	0,05	
		N ₂	300	
Aydrogen production using brine electrolysis, followed by purification	Downstream of the purifier	Ar	300	
followed by purification	of the put mer	H ₂ 0	5	
		02	5	
		TS	0,004	
		THC as C1	2	
	Downstream of the purifier	CO	0,2	
		Halogens	0,05	
		N ₂	300	
Purification of coke-oven gas, and distribution		Ar	300	
		H ₂ 0	5	
		ream urifier Ar H_2O O_2 TS THC as C1 CO Halogens N_2 Halogens N_2 Halogens N_2 Halogens H_2O O_2 N_3 HCHO HCHO HCOOH TS THC as C1	5	
		NH ₃	0,1	
		НСНО	0,2	
		Ar burifier H2O O2 NH3 HCHO HCOOH	0,2	
		TS	0,004	
		THC as C1	2	
		CO	0,2	
urification of by-product hydrogen from ethyl- ene plants, and distribution	Downstream of the purifier	N ₂	300	
che plants, and distribution		Ar	300	
		H ₂ 0	5	
		02	5	

Table C.5 — Non-routine analysis work

Facility type	Sampling/ Monitoring point	Contaminant	Standard value	
			(µmol/mol)	
With off-site supply of transported compressed or liquid hydrogen	End of nozzle	Those not analysed by the distributor		
		N ₂	300	
		Ar	300	
		H ₂ 0	5	
		toring pointContainmanttoring pointThose not analysed by the distributor N_2 N_2 Ar H_2O O_2 O_2 ream of the deo- tt equipment(Those listed for the odorant)d of nozzleThose not analysed by the distributord of nozzle N_2 M_2O O_2 wnstream he purifier O_2 d of nozzle N_2 M_2O O_2 M_2O M_2 <td>5</td>	5	
	Downstream of the deo- dorant equipment			
With off-site supply from hydrogen pipelines		N ₂	300	
	End of nozzle	Ar	300	
		H ₂ O	5	
		02	5	
	Downstream of the purifier	СО	0,2	
	End of nozzle	TSa	0,004	
With on-site supply of hydrogen produced from		THC as C1	2	
hydrocarbons utilizing steam reforming, cata- lytic reforming, partial oxidation, or ATR and		CO	0,2	
purification using refining equipment		N ₂	300	
		the distributor N_2 Ar H_2O O_2 deo- t(Those listed for the odorant)Those not analysed by the distributor N_2 Ar H_2O O_2 CO TS^aTHC as C1CO N_2 Ar H_2O O_2 O_2 O_2 O_2 O_2 <	300	
		H ₂ 0	5	
		$\begin{tabular}{ c c c c } \hline Ar & & & & \\ \hline H_2O & & & \\ \hline 0_2 & & & \\ \hline 1 hose not analysed by the distributor & & \\ \hline 1 hose not analysed by the distributor & & \\ \hline N_2 & & & \\ \hline Ar & & & \\ \hline H_2O & & & \\ \hline 0_2 & & & \\ \hline 0_1 & & & \\ \hline 0_2 & & & \\ 0_2 & & & \\ \hline 0_2 & & & \\ 0_2 & & & \\ 0_2 & & & \\ 0_2 & & & \\ 0_2 & & & \\ 0_2 & & & \\ 0_2 & & & \\ 0_2 & & & \\ 0_2 &$	5	
	Downstream	H ₂ 0	5	
	of the purifier	02	5	
		Halogens	0,05	
With on-site supply from hydroelectrolysis and purification using refining equipment	End of nozzle	N ₂	300	
purmeation using remning equipment		Ar	300	
		H ₂ O	5	
		02	5	

Table C.5 (continued)

D.2.3, NOTE

Replace "As per the rationale in ISO 14687-2 (see B.2)" with "As per the rationale for water (see A.7)".

Bibliography

Replace the reference to ISO 14687-2 with:

[1] ISO 14687, Hydrogen fuel — Product specification

ISO 19880-8:2019/Amd.1:2021(E)

Price based on 14 pages